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1 Tangent Space

Definition 1. A topological space is an n-dimensional manifold if locally R™ Hausdorff second countable
space. For a manifold M, dim M denotes n, the dimension of M, and (U, ¢) is a chart of M if U C M is an
open set and ¢ : U — R" is an embedding. For two charts (U, ¢), (V,v) with U NV # ), a transition map
between ¢ and 1) is the map 9 o cp*1|¢,(Um,) cp(UNV)CR” - ¢p(UNV) CR™ A manifold with given
charts is smooth if every transition map is smooth.

Remark. By definition, locally R™, of manifold M, for any open subset U of M and p € U, there exists a chart
(V,¢) such that pe V C U.

Remark. Inverse map of a transition map is also a transition map, so indeed, every transition map of a smooth
manifold is a diffeomorphism to its image.

Remark. A set of charts {(Uy, ¢o) | @ € I} is an atlas if U, covers whole manifold. Each smooth atlas can be
extended to a unique maximal smooth atlas, so we may say a smooth atlas determines whole smooth structure
of the manifold. Because of some technical reason, we always consider the maximal smooth structure that could
be given for a manifold, which means, if (U, ¢) does not disturb smoothness of the given manifold, then it would
be considered as a chart of the manifold. For example, R™ itself has a smooth atlas (R"™,id) and without special
mention, R” is considered as a smooth manifold with the maximal smooth atlas generated from this atlas, so
(U, ¢) with open subset U of R™ and ¢ : U — R™ which is diffeomorphism between U and ¢(U) is always a
chart of R™.

Definition 2. A map f : M — N between smooth manifolds M, N is smooth at p € M if f is continuous
at p and there exists a chart (U,¢) of M where p € U and (V,4¢) of N where f(p) € V such that ¢ o f o
o o1 vynoy (U N f7H(V)) = (V) is smooth at ¢(p). A map f: M — N is smooth if smooth at every
point.

Remark. If a map f : M — N is smooth at p, then for any charts (U, ), (V,v) where p € U C M and
flp) e VC N, Yo fo @71|<p(f*1(V)ﬂU) is smooth at ¢(p). So, to check smoothness of a map with generating
atlas of manifolds are given, we only need to check from charts in atlases.

Remark. Smoothness of a map f: U C R™ — R™ between in real analytic sense and in manifold sense coincide.
Remark. This is equivalent to say there exists a chart (U, ¢) of M and (V,4) of N such that p e U, f(U) CV
and 1 o f o ! is smooth.

Remark. Easily, composition of smooth maps is smooth.

Definition 3. For a manifold M, C°°(M) is the set of smooth maps from M to R, and C°°(M, p) is the set of
maps from M to R which is smooth at p.

Remark. C°°(M) and C*°(M,p) are vector spaces naturally.
Definition 4. A smooth curve on a manifold M is a smooth map from an open interval to M.

Definition 5. A tangent vector to a curve c is the operator based on a smooth curve ¢ on M where 0 is in
the domain of ¢, which is
d(0) : C>®(M,c(0)) - R

defined as ¢(0)(f) = ¢/(0)f = & (f 0¢)(0) where ¢ is the parameter for c. A tangent vector at p is a tangent
vector to a smooth curve ¢ where ¢(0) = p. T, M is the set of tangent vectors at p which is called as the tangent
space of M at p.

Remark. A tangent vector is always a linear operator.

Proposition 6. A tangent space of a smooth manifold M is an R-vector space of dimension dim M.

Proof. Fix p € M and chart (U, ) where p € U. Let n = dim M. For any smooth curve ¢ : I — M where
c(0) = pand f € C®(M,p), let ¢ = poc|jne—rwy : INcHU) = R"and f = fop ' :pU) CR* — R
Denote &(t) = (21(t), -+ ,xn(t)). Since f,c are smooth maps, so f,é are smooth maps in analytic sense. Now,
f OC‘Iﬂc—i(U) = fo 9071 OS0°C|mc—1(U) :Nf o ¢, so %fo c(0) = %f 0¢(0) = %f(xl(t)f“ T (1)) i=0 =
it o f(e(0)x}(0) = Yo7, 24(0) - oy f- Now, let Ly, : T,M — R™ be Ly('(0)) = (2(0),- -+ ,27,(0)).
Then, summation formula of %f o ¢(0) proves L, is injective. Moreover, for given (vq,--- ,v,), choose € > 0
satisfying (p) + []i_,[—e€vi,ev;] € (U) which is always possible, and define ¢ : (—e,e) — M as c(t) =
o ((tvy, tvg, - -+ ,tv,) + @(p)). Then, ¢(0) = p and }(0) = v;, so L,(c'(0)) = (vq,--- ,v,) which proves L,
is surjective. This defines a vector space structure for T, M. Since differential of transition map is a bijective
linear function, so vector space structure defined respectively to ¢ is equal to vector space structure defined
based on different charts. Thus, the vector space structure for T, M is well-defined, which means T, M is an
R-vector space of dimension dim M. O



Remark. In the formula L;'(z1(0),---,2,,(0))f = <(0)f = Y, ff;m)%‘mm(f o 1), 8%1- seems like a
basis just in symbol, where ¢/(0) could be thought as > ., x;(O)a%ib(p). So, we denote element of T, M as

S U'ia%ib where B%L|p is a tangent vector such that (a%lb) f= a%imp)(f o ¢~ 1) with hidden chart map
o(p) = (x1(p), - ,zn(p))-

Definition 7. For a manifold M, the tangent bundle of M, T M, is UpeM{p} x T, M. The natural projection
from TM to M is 7 : TM — M such that 7(p,v) = p.

Remark. TM has a natural manifold structure, where dimTM = 2dim M.

Definition 8. For a map F': M — N between smooth manifolds which is smooth at p € M, differential of
F at pis a linear map dF), : T,M — Tpy N such that dF,(v)f = v(f o F) for every f € C*°(N, F(p)), which
is well-defined since for v = ¢/(0), v(f o F) = & (f o Fo¢)(0) = (F o¢)'(0) f, which means dF,(v) = (F oc)'(0).

Remark. For a smooth curve defined on 0 deo()f = L(f oc)(0) = (0)f. Thus, ¢(0) = dcg. Similarily,
d(to) is defined as ¢'(to) f = deg, () f = L(fo )(to) Where ' (to) € Teqro) M.

Remark. f F: L - MandG: M — N, (GOF) p(v) = (GoFoc)(0) = dG p(c(0)) ((Foc)'(0)) = dG p(p) (dFp(v)).

Definition 9. A vector field X on a smooth manifold M is a map from M to T'M such that X (p) € {p} xT,M.
A vector field is smooth if it is smooth as map between manifolds. Also, we may consider X (p) € T, M since
X(M) C TM could be understood as a function from M to ¢, TpM and then, X (M)(p) € T, M. To make
this notation be more natural, 7'M could be understood as disjoint union of 7}, M's. We will use both conventions
freely.

Remark. For v € T,M, we denote v = -, Uia%ib' Then, vector field X, X (p) can be denoted as X (p) =
Yot ai(p) 5o 0 -|p where a; are functions to R. In a fixed hidden chart, smoothness of X is obtained by smoothness
of a;s and notatlon X = ZZ 10— a mlght be available.

Remark. For each f € C™(M) and smooth vector field X, we may think X f € C*°(M) as X f(p) = X(p)f. In
this point of view, X also be understood as a map C>* (M) — C>*(M).

For smooth vector fields X, Y, notation Y X f makes sense for smooth map f. But Y X might not be a vector
field since every vector field satisfies X (fg) = (X f)g+f(Xg) but (Y X)(fg) =Y (X(fg9)) =Y (X f)g+f(Xg)) =
YXfHg+ (XN Yg)+ (Yf)(Xg)+ f(YXg) which might be different to (Y X f)g+ f(Y Xg).

Definition 10. For smooth vector fields X, Y, Lie derivative of X and YV is [X,Y] = XY — Y X.

Remark. By snnple calculation, [X,Y](f ) ([X,Y]f)g + f([X,Y]g), so it works like a vector field. Actually,
for X =37 X2 and Y = Z:l LY (X, Y]=>" (XY’ - YXl)i so it is really a vector field.
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1.1 Connection
Definition 11. For a smooth manifold M, T'*(TM) is the set of C* vector fields on M.
Definition 12. For a smooth manifold M, V is a connection of M if it is amap V : TM x TY(TM) — TM
such that
1. V((p,v),Y) € T,M.
2. For every o, € R,{,n € T,M, V(a + n,Y) =aV(Y) + 5V(n,Y).
3. V(§, Y1 +Y2) = V(£ Y1) + V( Ya).
4. For f € C=(M), V((p,v), fY) = (vf)Y (p) + f(p)V((p,v),Y)
Remark. If f is a constant function, vf = 0, so V(§,aY; + 8Y2) = aV(£,Y7) + BV(£,Y3) is also satisfied.

For a connection, V.Y = V(,Y) is also used as notation. If a connection is defined, then for any smooth
vector fields X, Y, VxY is also a vector field defined as (VxY)(p) = Vx@pY, so V can be understood as map
I (TM) x T'°(TM) — T'(TM). Connection is smooth if its image is in T'*°(T'M).

Proposition 13. For a connection V, V(, ,,Y is determined by the restriction of Y to any open neighborhood
U of p.

Proof. It is enought to show Y|y = 0 implies V.Y = 0. Suppose Y|y = 0 and let f be a bump function, where
[+ M — R satisfying f(p) = 0 and f|yg = 1. Then, fY =Y. Thus, VY = Ve fY = (£f)Y ], + f(p)VeY =
0. O



Remark. Conversely, for a C! vector field Y only defined on U, for each p € U, we may consider a bump
function ¢ : M — R such that support of ¢ is included in U and ¢|y = 1 where V is an open subset of U

803/ ?Vﬁf . Then, Y € I'(TM) and V, )Y only depends on Y|y = Y|y

which is independent to choice of the bump function. Thus, define V(, )Y = V(p,v)Y is well-defined.
Now, to calculate V.Y for & € T,,M, choose a chart  : U — R with p € U. Denote % as 0;. Then,
=2 578j|p. Define Christoffel symbols as I‘ék which satisfying Var0j = ), I’ék@l on U. Then, if
Y =3 ;170; on U, we finally get

VeV =3 Vo,V =3 Vo, Y 0?05 =D (0klpn?)0il, + 7' (9)Va,,05)
k k J

kg

containing p. Then, define Y = {

_Z ng aklpn al|p+§kz77 (P)ulp
—Z ng Alpn’) +Z§k r(p) | il

In other word, Christoffel symbols determine the connection. Moreover, any choice of Christoffel symbol and
above calculation as definition, we can define a local connection always. Using a partition of unity, those local
connections can be combined into a global connection. Lastly, using above formula, we can calculate connection
if smooth curve ¢ satisfying ¢(0) = p, ¢/(0) = £ and Y o ¢ is given since Y, £8(0|p,n') = &n' = (n' 0 ¢)'(0).

1.2 Parallel Transportaion of vector field

Definition 14. For a path w : (a,b) — M, a vector field along a path w is a map X : (a,b) — T'M such
that 7 o X = w where 7 is the natural projection 7'M — M. In other words, X (t) € T, M.

Remark. If a chart « : U — R" is given, then we may denote w/ = 27 o w with appropriate domain reduction

and X = 253(6 ow) where & : (a,b) — R.

Definition 15. If X =}, &7 (9;0w) is a given vector field along a path w with a chart, then for given Christoffel
symbols in the chart, i.e., given connection on M, VX is a vector field along w defined as

VtX:Z Z kow§J )/ (0) ow)
l

Remark. It can be done, with change of variable among Christoffel symbols, that above definition is independent
to choice of a chart, so is well-defined.
Proposition 16. For vector fields X,Y along a path w: (a,b) = M and f : (a,b) — R, followings are true.

1. Vi(X+Y)=V, X+ VY

2. Vi(fX)=f' X+ fV: X

Proof. Omit.
Remark. Actually, for a vector field X, V(X ow) =V, n X.

Definition 17. For smooth manifolds M, N and a map ¢ : N — M, X is a vector field along a map ¢ if
X : N — TM satisfies m 0 X = ¢, which means X (p) € Ty, M.

Proposition 18. For a differentiable vector field X along ¢ : N — M, fixge N, € T,N and V on M. Then,
for any curve w: I — N with w(0) = ¢,w’(0) = &, V(X ow)(0) is unique, where V; is calculated along ¢ o w.

Proof. Omit.

Definition 19. For smooth manifolds M, N and a vector field X along a map ¢ : N — M, the derivative of
X along ¢ in the direction { € T, N with given V on M is V¢ X = V(X ow)(0) where w is a smooth curve
on N satistying w(0) = ¢,w’'(0) = &.

Remark. Even though ¢ = id)s, meaning of two V¢ coincide, so this has no problem. Moreover, for a given M
and a path w, if we choose N =R, ¢ = w, we may conclude that V, = Vy,. Moreover, V¢(X o ¢) = Vg, )X
in general.



1.3 Parallel Translation of vector fields

Definition 20. A vector field X along a path w on a smooth manifold M with a given connection is parallel
if Vi, X =0.

Proposition 21. For a given path w on a smooth manifold M with a given connection V, for every ty in
domain of w and § € T, M, there exists a unique vector field X along w such that X(ty) = { and X is
parallel.

Proof. Omit. It is from the uniqueness of solution of linear ODE with given initial condition. Observe V; X =0
is exactly equivelent to a first order linear ODE with n unknown functions £!,--- ,£™.

Remark. Tt means the dimension of the space of parallel vector fields along a curve is exactly the dimension of
the tangent space, which is equal to the dimension of the manifold.

Definition 22. For a smooth manifold M with V and a path w on M, the parallel translation from T,y M
to Ti,(+,)M is the linear map denoted as 7, ¢, which satisfies 7, 1,(§) = X¢(t2) where X¢ is the unique parallel
vector field along w with X¢(¢1) = £. Note that linearity is obtained from the linearity of ODE.

Remark. Parallel translation along curve is dependent to choice of w. Observe that 7, ;, and 7, ¢, are inverse
to each other, so they are all isomorphism, which means translating vector field along path does not vanish if
initial is nonzero. Thus, if not dependent, we always be available to construct well-defined nonvanishing vector
field for every smooth manifold, which is impossible by Borsuk-Ulam theorem. Also, for S?, using parallel
translation along triangle, which is piecewise smooth, that be different from original vector easily.

Theorem 23.

ViX(to) = Jim Tt (Xt(t))t_ X(to)
—lo — 19

Proof. Omit. Choose linealy independent parallel vector fields E; and denote X (¢) =3, &I(t)E;(t). Compare
both side.

1.4 Flows and integral curves

Definition 24. For a given vector field V' of a smooth manifold M, a curve v : I — M is an integral curve
of Vif v/(t) = V],

Remark. For a chart (U,¢), # = poy and Y = dp oV, v is an integral curve if and only if 5/(t) = Y (y(t)),
which introduce an ODE.

Theorem 25. For a given vector field V' of a smooth manifold M, for every point p € M, there exists a
neighborhood W of p, an interval I = (—e, €) and a map F : W x I — M such that

1. For every ¢ € W, F(q,—) is an integral curve of V at ¢, which means F(gq,0) = q.
2. F is differentiable.

Proof. Omit. It is also from the ODE theory.
Remark. This F satisfies F(F(q,t),s) = F(g,t + s), which is the property that defines a local flow.

Remark. Moreover, for a given vector field V', F' can be extended to a unique maximal flow F™ : Up{p} xIp — M
such that I, is an open interval containing 0 and if s € I, then Ip«(, ) = I, — 5. In this maximal flow, F™*(p, —)
is the unique maximal integral curve of V' starting at p, which means F*(p,0) = p.

1.5 Geodesics and geodesic flows

Any differentiable curve v : I — M of a smooth manifold M can be extended to a curve of TM as (y(t),~'(t))
naturally. Moreover, natural charts of TM is for any chart (U, z), (7=1(U), Q) where Q : 7=1(U) — R?" such
that Q(&) = (¢(£),4(§)) with ¢ = z o7 and ¢(§) = £z, where this notation means just applying since each
tangent vector maps R -valued functions to R value, so it also can be thought as mapping from R"™-valued
functions to R™ value, just apply componentwisely.

Definition 26. A C! path w : (a,b) — M with [ > 2 for a smooth manifold M with a connection is a geodesic
if Vi’ = 0. ie., o is parallel along w.

By Definition , a geodesic is a curve w : (a,b) — M which satisfying following system of ODEs.

Iz ! ik
w +Z(I‘jkow)w w” =0
gk



for I/ =1,2,---,dim M, which is 2nd order. We may reduce the order of the equation as
= y!

i .
g == (T cw)ylyF
"

Generally, for Q : 771(U) — R24mM 5 natural chart of TM, by definition, ¢ = Zj q'i(g)aj|,,(£). Then, if
we consider w as a smooth curve over TM, as (w(t),y(¢)), above equation means it becomes an integral curve
of the vector field

Definition 27. The unique maximal flow of G is called as the geodesic flow.

Proposition 28. For the geodesic flow ¢, define v¢ : I = M as v¢(t) = w(p(&,t)). Then, 7 is the unique
maximal geodesic in M such that v¢(0) = 7(£) and 7;(0) = €.

Remark. By its definition, v¢(t) = ¢(, ).
Proposition 29. For a smooth manifold M, £ € TM and a real number a > 0, I, = 21 and vae(t) = ve(at)
where + is the unique maximal geodesic.

Proof. Omit. It is from the uniqueness of the maximal geodesic.

1.6 Exponential map

Proposition 30. A set TM ={ € TM |1 € I} is an open starlike with respect to 0 € I'(T'M), which means
0 vector field.

Proof. Open is from the openness of maximal interval of the maximal flow and starlike is from the fact that

& € TM implies a§ € TM for every a € [0, 1].

Definition 31. For a smooth manifold M, the exponential map is a map exp : TM — M defined as
exp & = y¢(1).

Proposition 32. Exponential map is a differential map and has the maximal rank at 0 € I'(T'M), which means
for every reduced map exp,, : T,M N'TM — M defined as exp, § = exp ¢ has the maximal rank at 0, so locally
diffeomorphic at 0.

Proof. Differentiability is from the differentiability of flows. Now, fix p € M and let canonical identification
be Iy : T,M — To(T,M). Then, for any £ € TyM, let we : I — T,M as we(t) = t§. Then, by definition,
wg(0) = Ip§. Now, d(exp,)o is a map from To(TM N T,M) to T,M since exp,(0) = p. Now, if ¢t € I¢ then
1L € Iie, so exp,, owe(t) = exp(t§) = vie(1) = v¢(t). Thus,
, d d
(d(expy,)o © In)(§) = d(exp,)o(we(0)) = (d(exp,)o © d(wﬁ)o)% = d(exp, OWE)O%
= (exp, owe)'(0) = 7¢(0) = €

which proves d(exp,)o o Io = idr, as, S0 has maximal rank at 0. O

1.7 Torsion tensor and Curvature tensors

Definition 33. For a smooth manifold M with a connection, the torsion tensor of vector fields is a map
T:T°(TM) xI'*°(TM) — I'*°(TM) which is defined as

T(X,Y)=VyX — VxY — [V, X]

Proposition 34. The torsion tensor 7' has following properties.
1. T(X,Y)+T(Y,X)=0.
2. T(X+2Y)=T(X,Y)+T(Z,Y)
3. T(fX,)Y)=fT(X,Y)
Thus, if X =}, &9, and Y = > 770, then T(X,Y) = ik kT (9, 0).



Proof. First, T(X,Y)+ T(Y,X) = 0 since [X,Y]+ [V, X]=0. T(X +Z,Y)=T(X,Y)+ T(Z,Y) is from the
multilinearity of the V and Lie derivatives. Lastly, for f € C*°(M),
T(fX,Y)=Vy(fX) = VyxV = [V, fX] = (Y/)X + fVy X — fVxY — (Y (fX) - fXY)
=Y HX+ f(Vy X —VxY)—(Y)X - fYX + fXY

O

Remark. Using this fact, if we fix p € M and choose £, € T, M, then for any vector field X,Y such that
Xl|p=¢6Y], =n, T(X,Y)|, is independent from the choice of X,Y. Thus, we can define the torsion tensor
T:T,M xTyM — T,M as T(§,n) = V, X — VY — [Y, X]|,, where XY are extensions of &, 1, respectively,
defined in a neighborhood of p.

Definition 35. For a smooth manifold M with a connection, curvature tensor is a map R : T,M x T,M X
ToM — T, M is defined as

R(&,n,¢) = R(§,n)¢ =V VxZ -~ V¢VyZ = Viyx),Z

where X,Y, Z are extensions of £, n,( respectively, defined in a neighborhood of p, and above definition is
well-defined but we will omit the proof of it.

Remark. Similar to the case of T', R is multilinear over functions, and R(X,Y)Z + R(Y, X)Z = 0.

Proposition 36. If 7' = 0 on whole manifold M, then for every &,1,( € T,M, R(§,n)(+R((, En+R(n, ()€ = 0.
This is called as first Bianchi identity.

Proof. Since multilinear, it is enought to show when & = 0;|,,7 = Oklp,( = 01|, Choose extensions as
8j,8k,8l. Since T = O, T(aj,ak) = Vakaj — Vajﬁk — [8k,8j] = 0. Since [3k,6j] = 0, Va,ﬂj = Vajak-. Thus,
R(0lps Oklp)Oilp = Vo, |,Vo,00 — Vo,|, Vs, 0. Then, use Vi, 0; = V0, it is easily shown that R(9;,0x)0; +
R(&l, 6j)8k + R(&k, 81)@- =0. O

Definition 37. For a smooth manifold M with a connection, T}k and Réjk in a hidden chart are defined as
functions satisfy followings

L T(9;,0) = >, Th0r
2. R(9;,0,)0; = >, RL;,.00

ik
Remark. By just calculation, T}k = I‘ék — I‘fgj. Similarily, Réjk is also a function of Christoffel symbols,
Rl‘jk- = akréj — ;T + >, (Dy, T, — kari-j)

) i ij-rk

1.8 Riemannian metric
Definition 38. For a smooth manifold M, g is a Riemannian metric if g : Up{p} x TpyM x T,M — R such
that g, : T,M x T,M — R is an inner product for every p € M.

Definition 39. A Riemannian metric g is differentiable if for any open U C M and differentiable vector
fields X,Y over U, g(X,Y)|y : U — R is differentiable. Manifold is a Riemannian manifold if it equipped
with a smooth Riemannian metric.

Definition 40. For smooth manifolds M, N with map ¢ : M — N and a Riemannian metric h on IV, pull-back
metric on My = {p € M | d¢,, is injective} is defined as

¢ hp(€,m) = hg(p) (ddp€, ddpn)
Remark. If a point p is not in My, ¢*h,, can be defined as a symmetric bilinear map, but it would be not positive

definite.

Definition 41. For smooth manifolds M, N with Riemannian metrics g, h respectively, ¢ : M — N is a local
isometry of My into N if g|p;, = ¢*h. ¢ : M — N is an isometry of M into N if ¢ is an embedding local
isometry. ¢ : M — M is an isometry of M if ¢ is a diffeomorphic isometry.

For a manifold with a metric g, g,(£,n) is also denoted as (£, n)|p, or (£, 7).

Definition 42. For a Riemannian manifold (M, g), V is a Levi-Civita Connection if it is a connection
satisfying



1. VxY = Vy X + [X,Y], which means T = 0, torsion-free.
2. X(Y,Z) = (VxVY,Z) + (Y,Vx2).
Remark. If Y, Z are vector fields along a curve w, then %(Y, Z)wty = VY, Z) i) + (Y, ViZ) 1) is also satisfied.

Proposition 43. For a Riemannian manifold (M, g), there exists a unique Levi-Civita Connection.

Proof. 1If V is a Levi-Civita Connection,

(VxY,Z) = X(Y,Z) - (Y,VxZ) = X(Y, Z) — (Y,V;X) — (Y, [X, Z])
=X(Y,Z) - Z(Y, X) + (V2Y, X) — (Y, [X, Z])
= X(Y,2) = Z(Y, X) + (Vy Z, X) + ([Z,Y], X) — (Y, [X, Z])
=X(Y,Z) - Z(Y, X) +Y(Z,X) — (Z,VyX) + ([2,Y], X) - (Y, [X, Z])
=X(Y,2Z) - Z(Y, X) +Y(Z.X) - (Z,VxY) = (Z.[Y. X]) + ([2. Y], X) — (Y, [X, Z])

which proves
<VXY7 Z> = %(X<Yv Z> - Z<YaX> + Y<ZvX> - <Xv [Y7 Z]> - <Ya [X7 Z]> - <Z7 [Ya X]>)

Thus, if Z; are orthogonal basis, then VxY = Z %ZQZJ,, which proves VxY must be unique if exists.
To prove existence, define

vy =% XY, Z;) = 2;(Y, X) +Y<Zj,X>2—<Z<

VA

X, Dfa ZJ]) — <Y7 [Xv ZJD - <Zj7 [Yv X]>
Z;)

Z;

Then, it can be done that V is really a connection satisfying conditions of the Levi-Civita connection. Detail is
omitted. O

Definition 44. For a Riemannian manifold (M, g) with a given chart, g;;(p) = g,(0; |p, 0jlp); G(p) is the matrix
consist by g;;(p), which is symmetric positive definite, and ¢g*/ are components of G~ (p )

First condition of Levi-Civita connection gives Fé. B = Fﬁcj. Moreover, the formula of (VxY,Z) gives

1
(Va,05,0r) = 5(8kgjr — 0rgjk + 0jgrk)

Thus, by the definition of Christoffel symbols,

ZF]kgmr = akgjr - argjk + ajgrk)

Then, use
SN Ihgmrg™ =D T =T

we can conclude
Tl = ZQ (Okgjr — Orgjk + 0grk)

which is the formula of the Christoffel symbols of the Levi-Civita connection induced by the Riemannian metric.
Lastly, for formal calculations, we might use ds? = > ik gjkdxIdz® which is the classical expression for the
Riemannian metric, which becomes ds? = 5 j (dx?)? for the usual Euclidean metric.

1.9 Lengths of Curves on a Riemannian manifold

Definition 45. For £ € T,M, [£] = \/(&,&),.

Definition 46. For any continuous piecewise C'! path w : [a,b] — M, the length of w is defined as

:/: |w’(t)dt:/ab\/m

Definition 47. For a connected Riemannian manifold M, so is path-connected, d : M x M — R is a function
defined as
d = inf ¢
(pq) = inf £w)

where (2 is a space of continuous piecewise C! path start at p and end at g, which is well-defiend since £(w) > 0
always.



Proposition 48. For a connected Riemannian manifold M, d is indeed a metric of M.

Proof. From its definition, d(p, q) = d(q,p) > 0 and d(p, q) < d(p,r)+ d(r,q) are easily shown. Now, for p € M,
choose z : U — R™ which is a chart of M satisfying p € U. Then, choose r > 0 such that B(z(p),r) C z(U)

which is always possible in the Euclidean space. Now, for each ¢ € U, define A(q) = minj¢|=1 ¢cr, %

where £ = Zj €99;. Then, A > 0. Moreover, for every & € T,M, [¢| > )\(q),/zj(fj)Q. Then, choose
A= min, BEm) A(g) which exists from the compactness, and A > 0. Then, for any ¢ € T,M with

q € v (B(x(p),)), €] = A\/32;(&7)? which proves d(p,q) > Az(p) — z(q)| for ¢ € 27! (B(x(p),r)) where
|z(p) — z(q)| is computed by the Euclidean metric. Thus, especially, p # ¢ and ¢ € 2~ (B(z(p),r)) implies
d(p,q) > 0. If ¢ ¢ 2= *(B(x(p),r)), then for any path w : [a,b] — M such that w(a) = p,w(b) = q, there exists
s € [a,b] such that x(w(s)) € 9B(x(p),r), which is from the continuity of the metric of the Euclidean space.
Now, l(w) > £(W]a,s)) = d(p,w(s)) > Alz(p) — x(w(s))| = Ar. Thus, d(p,q) > Ar > 0 which proves d(p, q) > 0 if
p # q, so d is a metric of M. O

There is another proof using geodesics, which actually proves stronger fact that in local sense, geodesic
curves give the minimum length. We will do this from now.

Definition 49. For a Riemannian manifold M and ¢ €M, define B(q,e) = {{ € T,M | [§| < €}, B4 = B(q, 1),
S(g,e) = {§ € TyM | [€] = €}, Sqg = S(g,1). Also, for V. C M, define B(V,e) = U,cy B(g,¢) and S(V,¢) =
Ugev S(9:¢)

Theorem 50. For a Riemannian manifold M and each point p € M, there exist an € > 0 and an open
neighborhood U C M such that

1. VYo, B € U are jointed by a unique geodesic curve 7 such that £(v) < e.
2. The geodesic depends differentiably on the endpoints.
3. For every ¢q € U, exp, maps B(g, ¢) diffeomorphically onto an open set of M.

Proof. Omit detail. For o : M — T'M such that o(p) = 0, € T,,M, use a kind of application of Proposition,
mxexp: TM — M x M also has the maximal rank on o(M). Then, use inverse function theorem so local
diffeomorphic property is obtained. Then let W C T M be an open set gives diffeomorphism. Then, choose V
and € > 0 satisfying B(V,e) C W and choose U such that U x U C (7 X exp)(B(V,¢)).

Proposition 51. For a Riemannian manifold M and geodesic ¢, |v;(t)| = [¢].

Proof. Easily, %(’yé(t),’yé(t)) = 2(Viy£(t),7(t)) = 2(0,7¢(t)) = 0 by the definition of geodesic curves. Thus,
GiVe(®)[? = 050 7 (t)] is constant along ¢ (t). Since 7(0) = &, [v¢(8)] = ¢ (0)] = [¢]

Lemma 52 (Gauss Lemma). Let p € M and B(p,d9) € TM. Then, for any t € (0,0),& € Sp,¢ € TyeS(p, t),
(¢ (1), d(exp,)ieC) = 0.

Proof. Fix £ € S,. We may assume dim M > 2. Define ¢+ = {n € T,M | (n,&) = 0}. Let Lic : T,M — T T,M
be the canonical isomorphism. Now, fix n € £&* and t € (0,dp), define a path in T, M as w;(6) = t(cos(|n|0)& +
sin(|n|9)ﬁ). Then, w(0) = t€ and w;(0) = tLen. Now, wi(0) € S(p,t), so tlen € T1eS(p,t). Because of the
dimension, map n — tln is actually an isomorphism. Then, for any ¢ € T;S(p,t), n = t_lltz.lc € &t Let
v(t,0) = expw,(6) which is well-defined since |w;(0)] =t < dg. Then, v(t,0) = expw;(0) = expté = v(1) =
Ye(t). Let c(t) = (t,0) and d4(0) = (£,0). Denote dv )0 as dyv and dv(y,0)0p = Ogv. Since Oe,0) = ¢'(t)
and Jg|,0) = di(0), Op(t,0) = dv0)c'(t) = (voc)(t) = 'yé(t) and Jpv(t,0) = dv,0d(0) = (vody)'(0) =
% expw;(0)(0) = d(exp,,)icw;(0) = d(exp,,)iC. Thus, it is enought to show that (0yv, 9gv)y 1,0y = 0.

Now, consider V; = Vj, and V. = Vjy_, where they are derivative along v. By Proposition , |Opv| =1
all over (t,0), and by definition of the geodesic curve, V,0;v = 0. Moreover, using Vg, 0, = Vy, 0;, it can be
done that V;0pv = Vy0;v generally. Then, we get

d
%<8t'07 89U>v(t,0) = <Vt5tv,39?f>v(t,o) + (0w, Vt3911>v(t,0)

= (O, Veatv>v(t,0)

1d 1d

= 5@@,57),3250%(,570) = 5@1 =0

Lastly, v(0,0) = expwqo(#) = exp, 0 = p which prove 0gv|v(0,0) = 0. Thus, (Osv, 0gv)y(t,0) = (04, 0gV)y(0,0) =
0. O



Lemma 53. For a Riemannian manifold M and p € M, suppose U, ¢ satisfying Theorem [50}. Then, for
any piecewise C' curve o : [o, ] — U \ {p} which can be written as the form o(7) = exp, t(7)&(7), where
t:a,B] = (0,e) and & : [o, 8] = Sy, £(0) > [t(B) — t(av)|. Moreover, equality hold if and only if ¢ is monotone
and ¢ is constant.

Proof. Omit.

Theorem 54. Suppose 7 : [0,1] — M is a geodesic such that v(0) = p,v(1) = g where p,q € U, (v) < ¢
where U, ¢ is from Theorem . Then, for any continuous piecewise C' path w : [0,1] — M satisfying
w(0) = p,w(1l) =g, £(y) < £(w). Moreover, equality holds only if ([0, 1]) = w([0, 1]).

Proof. Choose g > 0 satisfying (g9 + 1)¢(y) < ¢ and if we extend geodesic, so construct 5 : [—eg,1] —
U C M, ¢, U satisfy Theorem respect to ¥(—¢gp) also. Remark that for geodesics, § : [t1,t2] — M,
(B) = J2 18 (®)ldt = [,718'(0)|dt = |B'(0)[(t2 — t1). Thus, £(3) = (s0 + 1)(7). Let A = B(¥(—e0),£(%))
B(¥(—¢0), €0f(7)) which is an open annulus in 75, M and G = exps_.,)A. Then, G is open in M, so
{7 |w(7r) € G} is an open set in R, so is a countable union of disjoint intervals (a;, 8;). Then, for each interval,
use Lemma s UWlas,8,]) = [ti(Bi) — ti(ay)|, where, by continuiuty, w(/;),w(a;) must on boundary of G.
Thus, ¢;(8;), ti(a:) € {€(), €0(7)}. Thus, [t;(8;) — ti(a;)| is 0 or £(7) — £(y)eo = £(7). Hence,

() 2 3 Holian ) = 3 1:(8) — tu(aw)]

where at least one of |t;(5;) — t;(c;)| must be £(y). Thus, {(w) > £(v). Equality condition is also from
Lemma [53L. O

This theorem implies a geodesic is the local minimizer of the length.

Remark. Moreover, it can be done easily that if a curve is unit speed piecewise C? and length minimizing, then
it is a geodesic. It is from that, for length minimizing unit speed curve, any part of this curve is also length
minimizing.

Corollary 55. If p # ¢ then d(p,q) > 0. Moreover, if B(p,0) = {g € M | d(p,q) < 6},S(p,d) = {qg € M |
d(p,q) = 0}, € is from Theorem [50L, then § € (0,¢) implies B(p,d) = exp B(p,d), S(p,d) = expS(p, §), where
exp is a diffeomorphism betwen them.

1.10 Hopf-Rinow’s Theorem

Definition 56. A Riemannian manifold is geodesically complete if V§ € TM, I = R where I¢ is the
maximal interval where geodesic can be defined. In other words, exp is defined on all of TM.

Theorem 57 (Hopf-Rinow 1). If a Riemannian manifold M is connected and geodesically complete, then every
two points in M has a length minimizing joining geodesic curve.

Proof. Suppose p,q € M and d(p,q) = § > 0. If § < ¢ where ¢ is from Theorem , then done. Thus,
we may assume 0 > ¢. Now, choose dy € (0,e). Then, by compactness, there exists py € S(p,dp) such
that d(po,q) = d(S(p,do),q). Now, let & = %exp;l B(p,e)(P0), 80 [§] € Sy, expdoé = po. First, 6 = d(p,q) <
d(p, po)+d(po,q) = do+d(po,q), so d(po,q) > d—dy. Moreover, for any continuous piecewise path w : [0,1] — M
with w(0) = p,w(1) = ¢q choose a € (0,1) such that w(a) € S(p,dp). Then, £(w) = £(wljo,a]) + ¢(W][a,1]) =
do + d(w(a),q) > 6o + d(po,q) > 6. Then, since inf,, {(w) =4, so by + d(po, ¢) = . Thus, d(q,v:(d)) = — do.

Now, assume §; = max{t € [0o,d] | d(q,7¢(t)) = d —t} < . Let p1 = ¢(d1). d(p,p1) +6 — 6 =
d(p,p1) + d(p1,q) > d(p,q) = 0 gives d(p,p1) > 01. Moreover, since p,p; are joined by 7eljo,5,) With |{] = 1,
so d(p,p1) < 61 which proves d(p,p1) = 6;. Then, consider ¢; is from Theorem where base point is p;.
Choose 02 > 0 as J < min{e;,d — d1}. Now, select po € S(p1,02) as d(q,p2) = d(q, S(p1,02)). Use similar
argument, 62 + d(p2, q) = d(p1,q) = d(p,v¢(61)) = § — 61. Thus,

d(p,q) = 6 = 01 + 02 + d(p2, )
= d(p,p1) + d(p1,p2) + d(p2, q)
> d(p,p2) + d(p2,q)
= d(p,q)
so d(p,p2) = d(p,p1) + d(p1,p2). By uniqueness of the geodesic and local minimizing property around py,

Ye(1 + 02) = p2. Thus, d(g,7¢ (01 + 02)) = J — 61 — 69 and 81 + d2 > &; which is contradiction. Thus, §; = 6, so
d(7¢(6),q) = 6 — 6 = 0 which implies v¢(J) = g. -

Corollary 58. If a Riemannian manifold M is geodesically complete, then every closed bounded subset is
compact.



Proof. For closed bounded set E, let § = sup{d(p,q) | ¢ € E}. Then, B(p,d) = expB(p,d), S(p,d) C
expS(p,d) C B(p,d). Thus, E C B(p,d) = expB(p,d) which is compact. Thus, E is a closed subset of a
compact set, so is compact. O

Remark. It proves that a geodesically complete space is a complete metric space.

Theorem 59 (Hopf-Rinow 2). If a Riemannian manifold M is a complete metric space, then it is geodesically
complete.

Proof. Suppose M is complete but not geodesically complete. Then, 3¢ € T'M such that Iy # R. Without
loss of generality, assume infl = o > —oo. Now, choose a decreasing sequence such that ¢, > a and
tn - Q. NOW7 d(’}/f(tn)a’}f(tm)) < é(’}/f|[min{tn7tm}7max{tn7tm}]) = ‘€||tn - tm| which proves ’Y(tn) is a Ca‘uChy
sequence. Therefore, 3¢ € M such that ~(¢,) — ¢ since M is a complete metric space. Now, let U be
a neighborhood of ¢ such that U is compact. Then, {¢ € 7#=1(U) | [¢| = |¢|} is compact in TM. Since
[7(tn)] = €] always, so there exists a subsequence 74 of ¢, such that v;(7x) converges in T'M. Assume
Ye(ri) = m. Then, let g : {a+a | z € I} - M as B(t) = ,(t — a). Then, 8 is a geodesic curve,
limg 00 B(7k) = 79(0) = g = limg—s00 Ve (Tk), ik 00 B () = 75,(0) = 1 = limy— 00 7& (1%). Thus, by uniqueness
of the geodesic with C? property and local diffeomorphic property of exp, 8(t) = ¢(t) where both are defined.

Thus,
N 'Yﬁ(t> tel
(E) = {%(t —a) tea+l,

is a well-defined, geodesic curve since it is an integral curve of the geodesic field. Moreover, ¥(0) = 7¢(0),
7'(0) = &, and infimum of domain is « + inf I, < o which is contradiction to that I¢ is the maximal interval

that geodesic start with £ is defined and inf I = o. O

1.11 Calculation with Moving Frames
Definition 60. For a real vector space F and o, € E*, a A : E X E — R is defined as (a A B)(&,n) =
a(&)B(n) — a(n)B(E).

Definition 61. For a differentiable 1-form w on M, which means w, € T,M* for every p € M, dw satisfying
dw, : T,M x T,M — R for every p € M is defined as dw(X,Y) = X (w(Y)) — Y (w(X)) —w([X,Y])

Remark. If w =73, wjdx?, then dw = Zj<k(% - a:,i)dxj A da®

Definition 62. Covariant derivative of a 1-form over a Manifold with a connection is V xw which is defined
as Vxw(¥) = X(w(Y)) —w(VxY)

Proposition 63.
dw(X,Y) = (Vxw)(Y) = (Vyw)(X) - w(T(X,Y))

Proof.
dw(X,Y) = X(w(Y)) = Y(w(X)) - w([X,Y])

= (Vxw)(Y) +w(VxY) = (Vyw)(X) —w(VyX) - w([X,Y])

= (Vxw)(Y) = (Vyw)(X) —w(Vy X — VY — [Y, X))

= (Vxw)(Y) = (Vyw)(X) —w(T(X,Y))
Definition 64. For an open U C M, differentiable vector fields ey, -+ ,e, on U is a moving frame if they
are pointwise linearly independent. In this case, denote its dual coframe field as w!, -+ ,w", so w'(e;) = &;;.
Theorem 65. For a Riemannian manifold M and orthonormal moving frame eq,--- , e,

1. dw’ =Y, w* Aw] where w] are connection 1-forms defined as w¥(€) = (Vee;, ex) and satisfies wh = —w].

2. dw;-c => wé— AwF — Qf where Q?(X,Y) = (R(X,Y)e;, ex) and Q;“ = —Qi.

Proof. First, we will compute more generally. Consider any connection.
Suppose w;? are 1-forms satisfying Vee; = >, w}“(g)ek which exists since e; are basis. Then, w'(e;) is

constant, so £w'(e;) = 0 always. Then,

0= £(w'(eg)) = (Vew')(ej) +w'(Veey) = (Vew')(ej) + wj(€)



Then, Vew! = Zj(vgwl)(ej)wj == wh(§)w?. Now,

dw’ (X,Y) — Z(wk Awl)(X,Y) = X(w (V) - Y (/ (X)) — o’ ([X,Y]) — Z(w’“(X)wi(Y) - WF(V)wi (X))
k k

X(W(Y)) =Y (& (X)) = ([X,Y]) + (Vyw’)(X) = (Vxw’)(Y)

=w(VxY) —w! (VyX) —w([X,Y])

= —w/(Vy X = VxY — [V, X]) = —/(T(X,Y))

Now, consider following
VyVxe; = vwa’f e
= Z ))er +wy (X)Vyer)
= Z ek + Zw Y)e)
= Z )+ Z wh ex

This gives

VyVXej - vayej - V[Y,X]ej = Z(dw;-c(Y,X) + Zw; A oJlk(X, Y))ek
k l

and hence,
R(X,Y)e; = (dwf(Y,X) + > (wh Aw)(X,Y))ex
k 1
Thus, w*(R(X,Y)e;) = dw (Y, X) + Zl(w AwF)(X,Y), so by defining Q?(X, Y) = wF(R(X,Y)e;), we gain
dwh(X,Y) =3, (wh /\wl)(X Y) - QFX,Y).

Finally, for a Riemannian manifold with the Levi-Civita connection, we gain 7' = 0, so dw’ = 3, (w* A w;)
Also, Vee; = Zk wh(&)ex gives wh (&) = (Veel, ep). Since (e, ex) = 0, we get (Veej, ex) + (ej, Veer), which
gives wh = —wl. QF = —QF is from dw? = —dw]. O
Remark. This proves (R(X,Y)Z,W) = —(R(X,Y)W, Z) since Q¥(X,Y) = w*(R(X,Y )e;) = (R(X,Y )e;, ex).

Remark. If we choose £ = e, then wf( m) = (Ve ej,er) = O, Tineren) =30, 1% gr.



2 Riemannian Curvature

2.1 Riemannian Sectional Curvature

Recall R(X,Y)Z = VyVxZ — VxVyZ — Viy,x1Z satisfying R(X,Y)Z = —R(Y,X)Z and R(fX,Y)Z
R(X,fY)Z = R(X,Y)fZ = fR(X,Y)Z. Thus, if dim M = 1, then R(X,Y)Z = R(X, fX)Z = fR(X,X)Z =
0, so we may assume dim M > 2 in this section.

Also, if T =0, we gain R(X,Y)Z+R(Z,X)Y +R(Y, Z)X = 0. Moreover, (R(X,Y)Z, W) = (R(Z,W)X,Y)
is also true if V is the Levi-Civita connection.

Proposition 66. k(¢,n) = (R(¢,n)€,n) determines R. In particular,

82
(REMCH) = § pos| (€ G+ tu) = K(E + sy, + £0))
s=t=0

Proof. Omit. Just calculate directly.

Definition 67. Rl is defined as Rl (ga 77)4: = <§7 <>77 - <777 C)g and kl (5,77) = <R1 (ga 77)5#7)

Proposition 68. R; satisfies

1. (X, Y)Z =-R (Y, X)Z

2. Ri(X,)Y)Z+ R(Z,X)Y + R (Y, Z2)X =0.

3. (R (X,Y)Z,W) = (R (Z,W)X,Y).

4. (Ry(X,Y)Z,W) = —(Ry(X, Y)W, Z).
Moreover, ki (€, 1) = (§,€){(n,n) — (& n)? = [£7n]* — (&,n)*.
Proof. Omit.

Definition 69. K is defined as K(¢,n) = :l(é% which is called as sectional curvature of the 2-section

determined by &, 7, where this definition works when £, 7 are linearly independent.

Proposition 70. K only depends on the 2-dimensional subspace determined by & and 7.

Proof. By simple calculation, k(af + 1,7 + 6n) = (ad — By)?k(&,n) and ki(aé + Bn,v€ + 6n) = (ad —
B)? k1 (€, m). O

Theorem 71. If dim M = 2, K is called as the Gauss curvature, which satisfies R(§,n)¢ = K(p)R1(€,n)¢.

Proof. Suppose {e1, ez} is an orthonormal basis of T, M. It is enought to show only the case £ = ( = e1,n = es.
Let R(&) = R(e1,&)er. Then, R is self-adjoint, so orthogonally diagonalizable. Moreover, e; is an eigenvector
with eigenvalue 0, so ez is another eigenvector. Now, (Reg, e2) = (R(ey, e2)er, e2) = k(e1,e2) = K(p)ki(e1,ez) =
K(p) is the eigenvalue of es since e, es are orthonormal. Thus, R(ej,ez)e; = K(p)ea = K(p)R1(e1,ez)eq, so is
done. O

Definition 72. Ricci curvature tensor is a map T, M x T, M — R such that Ric({,n) is defined as the trace
of the map ¢ — R(, ()n. In other words, for orthonormal basis e;, Ric(§,n) = >_;(R(§, e;)n, €;)-

Proposition 73. Ric is a symmetric bilinear form.

Proof. Omit.

Easily, if we choose e, = % to generate a orthonormal basis, then

K68 =) (R(& )6 e5) =D K(&e))Ef = (i K(& e;))I€l?
J J j=1

Then, to calculate associated quadratic form, scalar curvature .S, will be defined as S = Z?k:l itk K(ej,er).
For the Ricci curvature, if Ric;, = Ric(e;, er), flow satisfying

o ij(t) .
{gét( ) = —21§ZCU
gij(o) = 9;;5

is called as the Ricci flow.

Definition 74. R;;i; is defined as R;ji = (R(es, e;)ex, €r).



2.2 Riemannian submanifold

In this section, consider ¢ : M — M, an isometric embedding of M into M, as an inclusion.

Definition 75. If M is an embedded Riemannian submanifold of a Riemannian manifold M, then (7, M)+
the orthogonal complement of T), M in TPM. For each £ € T, pﬁ, ET is the projection of £ on T, M which is called

as the tangential part and EN is the projection on (T, M )+ which is called as the normal part. The normal
bundle of M in TM is defined as UPGM(TPM)L = vM. Then, I'(vM) is the set of differentiable sections of
v M, which means a right inverse of 7.

Proposition 76. For p € M, £ € T,M and Y € I'(TM), V¢Y = (V¢Y)T. Moreover, there is a symmetric
bilinear form B : T,M x T,M — (T,,M)* such that for any £,n € T,M and Y satisfying Y|, = n, B({,n) =
(VeY)N, which is called as the 2nd fundamental form. If we define b,(¢,n) for v € (T, M)+ as (B(£,n), ),
then bilinear self-adjoint linear transform A determined by b,(&,m) = (AYE,n) is actually A = —(VV)T,
where V is a vector field in T'(vM) such that extension of v € (T,,M)*.

Proof. Let D¢Y = (VY)T and B(£,Y) = (VeY)N. At first, by calculation, DxY can be shown as satisfying
conditions of Levi-Civita connection, so is the Levi-Civita connection by uniqueness. Then, B(X,Y)—B(Y, X) =
(VxY =Vy X))V = ([X,Y])N = Osince X,Y are tangential. Moreover, it gives well-definedness since B(X,Y) =
(VeY)N = (V,X)N, so only depends on X|,,Y|,. Finally, for V € T'(vM),
—~((VeV)T,m) = —~(VeVon)

= —E(V.Y) +(V, VeY)

= (V,VeY)

= (V,(VeY)™) = (v, B(§,m))

Theorem 77. o
R(&,m)¢ = (R(&,n)Q)T + APEy — AB(O¢

Proof. Omit.
Remark. In other workds, R(&,7n)¢ = (R(&,n)¢)T — (ﬁnB(f, N + (ﬁgB(n, )N, Thus,

(R(E&mC 1) = REMC ) + (—(VaBE )Y, ) — (=(VeBm, ). 1)
= (R(&,n)C, ) + (B(n, ), B(§,¢)) — (B(&, 1), B(n, €))

This gives
(B(&,€), B(n,m)) — B )|

(€12 nl? = (€, m)?

K(&n) =K(&n)+

2.3 Constant sectional curvature

Definition 78. A Riemannian manifold M has a constant sectional curvature k if K(o) = & for every
2-section o.

Proposition 79. M has a constant sectional curvature x if and only if R(&,n)¢ = k((£,()n — (n,()E).
Proof. Omit.

2.4 Second Fundamental Form Via Moving Frames

Assume dim(M) = n < m = dim(M). Choose an orthonormal moving frame satisfy that ,---,&, is an
orthonormal moving frame of TM in TM. Let es = ea|n, w = EA|M7 wg = wg\M.
—B —B
We already has do? = Y p,w? AW where Wi = —©F, dwlf} = 3,05 AwE — Q, where Q4 (X,Y) =

(R(X,Y)ea,eB).
Then, for j < n, dw’ ka /\cu,C For j >n, 0=dw =3 wk /\wk Now, assume w§ = >, hjkw
where o« > n. Then, 0 = Z?Zl wI NI h jkw =>j=1"% h;‘kw] A w*. Comparing coefﬁment, we get

_ ko 1 k kE_oF E_oF k
h$y, = hy;. Lastly, dwf = 310 Wb Awf + 3700 wf Awl — Q. Thus, QF = Q5 — 300, L Wi Awg.

2.5 How the metric changes if we change coordinates.

Consider a metric is defined in 1, -+ , x, and x1, o, -+ , X, is a function of gy, - - - 7yn Suppose g is the original

metric and ¢ is the metric based on y;. Now, Biy' =3 92, 0 Then, §;; = g(a‘z , 8y ). Thus,

J Oyi Oz

~ 8xk a:L'l 6$k
Jig —g(z 0y; amk Z@y 83@5 ZZ 0y; kl




Suppose J is the Jacobian matrix H Then J;; = 89“ . Then, above calculation gives

Gii = 2> Jrigndi; =Y Jingrdy
P ko1

which proves G = JTGJ. In another way, denote metric as Zl j gijdz'dx?. Since dz' =) . j ayldyj Use this,

metric becomes
E grdztdz' = E gri( 8xk yi)( 7axld y)
0y;

aal‘k aaﬁl

zd]

i,9,k,l
ox ox
_Zzakgkl o) dydy
i,

which gives same result above. Actually, for above calculations, number of y;s and z;s not need to be same,

where J will not be a square matrix. ngstly7 for xla, -+ Ty, function of yl7 - ,ym,8 denote this map as ¢.
d ;0 .

Then, d(ﬁ(@yi)f = 5 0 (fo ¢) > 8wa azf =3, azf 3o f. Thus, d¢( -) =2 822 ey Then, consider

»*g( 82 -, 8%-) =93, ‘g”;k Jor Zl 9z o 9_) which gives same results above, Wthh means actually, above chain
i7 dy; ;

rule is just the pull-back metric.

2.6 Standard metrics of some sets
2.6.1 Unit sphere
Unit sphere S? C R3, so S? has a natural Riemannian metric, induced by the Riemannian metric dy? +dy3 + dy3

2
211 _ 2xo _ lz|®-1
T2 Y2 = 52 ¥ = T2

of R®. Then, use the stereographic projection, y; = it can be shown that

)
g( Ox;? Ox; )
from calculation.

= Ggij = (Hﬁ%' From this, it is available to prove S? has the constant sectional curvature just

Definition 80. Two metrics g,§ on M are conformally equivalent if 3f € C°°(M) where f > 0 such that
9(p) = f(p)3(p)-

Remark. Since d;; is the metric ggz, on R? gs2\(n} and gg2 are conformally equivalent. Moreover, use opposite
stereographic projection, gg2 is locally equivalent to gg2. In other words, gg2 is locally conforamally flat.

For hypersurface, there exist some diffrent models.

Definition 81. A map g : Up{p} x T,M x T,M — R is a pseudometric if it is symmetric, bilinear and
T,M 3 & # 0 implies In € T, M such that g(§,n) # 0.

For the Poincaré Ball model of hypersurface, we will give a metric to B1 = {z € R" | 3, x? < 1}. For
n = 2 case, where it is nothing different for higher dimensions, let U = {(y1,y2,y3) € R3 | v? + y3 —y3 =

—1,y3 > 0} equipped with the pseudometric dy? + dy3 — dy3. Then, use hyperbolic stereographic projection,

_ 2 _ 2 _ 1+]z)? (y1,y2) _
Y1 = 1_‘;‘2,;(/2 = 1_‘;|2,y3 =T which is from Tros = (

455,7
=Tz

Another model is the Halfspace model, that we define a metric on (R*")™ = {z € R" | x, > 0}. Use
diffeomorphism ¢ : By — (R"™)™ which is called as the Cayley transformation, a pull-back metric on B; of ‘;’g‘

21,%2). Then, this gives a metric on By which is

on upper halfspace is (174[5%.

2.7 Compute the sectional curvature of S

Theorem 82. Suppose v : (a,b) x (—eg,e0) = M is a differentiable map such that v.(t) = v(¢,¢) is a geodesic
curve for every € € (—gg,ep). Denote dv,0; as Opv and dv.0d. as O-v. Moreover, denote Vg, as V; and Vy_ as
V. where they are differentiation of vector fiels along v. Then, V;V,9.v + VT (0;v, 0cv) + R(Opv, :v)0v = 0.
This is called as the Jacobi Equation.

Proof. Since [0, 0:] = 0, we get V.0v — Vi 0ev = T(04w,0:v) and V.V — V, V. = R(0v,d-v). Since v, are
geodesics, we get Vi0yv = 0. Thus,
0=V_.Vio
= VV:0v + R(Ov, Oeyy)0pv
= V(Vi0:v + T(0v, 0ev)) + R(Oyv, Ogy)Opv
= VVi0v + VT (0w, 0:v) + R(Oyv, 0:v)0pv



Proposition 83. For a local isometry ¢ : M — M for connected Riemannian manifold M, ¢ preserves
1. The distance
2. The Levi-Civita Connection
3. Geodesics
4. Sectional curvatures

Proof. The distance is preserved naturally by definition of the distance. To prove that the Levi-Civita connection
is preserved, we may use Christoffel symbols, or prove that VxY = do(V 41 xd¢~ 1Y) satisfies the conditions
of the Levi-Civita Connection and use uniqueness. Moreover, dd,V:V = V;(d0,V) gives that geodesics are
preserved. To prove this, choose V as elements of a basis, and use linearity. Sectional curvatures are also
preserved easily. O

Remark. Since geodesics are preserved, it gives that ¢(exp &) = exp dyé

To compute the sectional curvature of S™(p), note that in R¥, ¢(p) = Ap + ¢ is an isometry if A is an
orthogonal transformation. Since ggn(,) is the induced metric by inclusion, which is just a restricted metric of
the canonical metric of the Euclidean space, A|gn(, for A € O(n + 1) is an isometry of S"(p). Moreover, if
we denote I, : R" — T,R™ as the canonical identification, then T,5™(p) = I,({g € R" | p- ¢ = 0}) = L,(p).
Moreover, for A € O(n + 1), p € S™(p) and £ € T,5™(p), dA, (&) = Lap (AL (£)).

Proposition 84. S™(p) has a constant sectional curvature.

Proof. For every p,q € S™(p), &1,&2 € Tp, M, m1,m2 € T,M where (£1,&2) = (n1,12) = 0, since ﬁ;q,fgl(él),fgl(iz)
and %, I (m), I (n2) are both orthonormal in R™*!, so there exists A € O(n + 1) such that ¢ = Ap,m =
dAp(&1),m2 = dAp(§2). Then, since A is an isometry, K(&1,&2) = K(n1,12) always, so S™(p) has a constant

sectional curvature. O

Proposition 85. Every geodesic of S™(p) is a part of the great circles

Proof. Choose p,q € S™(p) such that there exists a unique geodesic v : [0,d(p, q)] — S™(p) such that || =
1,v(0) = p,v(d(p,q)) = g which is always possible locally. Suppose o is a plane passing through 0, p, ¢, which
is uniquely determined. Let A be the reflection to 0. Choose an orthonormal basis {eq,- - ,e,41} of R**! as
e1, es generates 0. Then, Ae; = e1, Aes = ey and Aep, = —ey, for k > 3. Thus, fixed points of A is just 0. Now,
A is an isometry, so Ao~ is a geodesic of S™(p) and |§]| = |dA,&| for every £ € T,M. Moreover, Ap = p, Ag = ¢
implies Aoy(0) = Ap = p = v(0) and Aoy (d[p, q]) = Ag = g = v(d[0, g]). Thus, Ao~ is also a length minimizing
geodesic, so Ao~y =+. Thus, v([0,d(p, q)]) C o N S™(p) which is a great circle. Thus, every geodesic is a part
of a great circle locally, so is a part of the great circles. O

Theorem 86. S"(p) has a constant sectional curvature ?12'

Proof. First, fix vg € S"(p). Choose &,n € T,,,5™(p) as orthonormal vectors. Define v(t, €) = exp, t((cos €)§ +
(sine)n). Note that S™(p) is complete, so geodesically complete, which means v is well-defined for every ¢,e.
Then, since geodesic is the great circle, v.(t) = v(¢,€) is the circle such that v.(0) = vy and 7.(0) = (cose€)€ +
(sin€)n. Thus, v.(t) = cos(ct)vg +sin(ct) I,  p((cos €)€ + (sin €)n) for some constant ¢ since |vg| = p in R™ ! and
[(cose)s+(sine)n| = 1. |y.(0)] = 1 gives c = %, 50 Ye(t) = (cos(t/p))vo+(sin(t/p)) I, ! p((cos €)é+(sin€)n). Then,
let v(t) = 70(t) and Y (t) = (0ev)(t,0) = Ly (sin(t/p)) I, pn. Then, by Jacobi-equation, V;V;Y + R(y,Y )y =
0. Let e(t) = LyIy'n. Then, this is a parallel transport, so Vie = 0. Thus, Y'(t) = p(sin(t/p))e(t) implies
V. V.Y (t) = —pp%(sin(t/p))e(t). Thus,

_%(Sin(t/p))e(t) =VVY

= —R(y'(t), Y ()Y (t)

= —p(sin(t/p)) R(Y'(¢), () (t)
Then, for t # 0, we gain %e(t) = pR(v'(t),e(t))7'(t). By continuity, it is also true for ¢ = 0. Then, if t = 0, it
gives 11 = pR(&,m)¢. Thus, K(&,1) = (R(&n)én) = 5 (n,m) = - m



2.8 Variations of Arc Length

Definition 87. For a given w : [a,b] — M which is a continuous piecewise C*° path, v : [a,b] X (—€g,€9) = M
is a variation of w if v is a continuous piecewise C* such that v(¢,0) = w(¢). v is a homotopy of w if
v(a,€) = w(a),v(b,e) = w(b) for every ¢ € (—¢p, €p), which means v fixes endpoints. v is a smooth variation
if v is smooth over [a, b] X (—€g, €).

Theorem 88. For differentiable w : [a,b] — M and a differentiable variation v : [a,b] X (—e€g,e9) — M, let
L : (—e€p,60) = R as L(e) = ¢(we) where w(t) = v(t,e). In other words, L(e) = fab |Ogv(t, €)|dt. Then, L is
differentiable and

dL aﬂ)(t,ﬁ) >

- = € t» Y19 1 N\
de <a v Batr, o)
Especially, if |w'| =1 and Y (t) = d.v(t,0),

d7L
de

b

b
at’l)(t,E)
— / <86““’ )V (e, o) > at

b
(0) = (V) [! - / (¥, V)t

Proof.
dL b
a = 0€L = 85/ \ (8,51), a{l))dt
b
= / Oc/ (O, Opv)dt

_ /b 0c(0rv, 0v) .,
a 2|atv‘

_ /b (Vﬁw,@w) dt
a ‘atv|

_ /b (Vﬁw,@w} dt
a ‘8”)'

v
b
v Oyv
= O { OV, —— ) — ( O, Vi —— ) dt
/a < ”|atv|> < ”Vtaw|>

b

b
8,51) >
- Ocv, Vi ) dt
t=a /(1 < t|atv|

O

Theorem 89. For a continuous piecewise C* path w : [a,b] — M where |w’| = 1 whenever v’ is defined, w is
a geodesic if and only if L’(0) = 0 for every homotopy of w.

Proof. By above theorem, if w is a geodesic, Vi;w’ = 0 gives L'(0) = 0 for every homotopy of w.

Now, suppose L'(0) = 0 for every homotopy of the given w. For every vector field Z along w, define
AZ(tg) = lim, Z(t)—limtﬁto_ Z(t). Then, for homotopy v of w, we get %= (0) = — 3" (Y, Aw’>—f:<Y, Viw')dt
where summation only works for singular points which are finitely many, so is well-defined. Choose t* € (a,b)
which is not a singular point of w’. Suppose Viw'(t*) # 0. Choose 6§ > 0 such that (¢* — §,¢* + §) doesn’t
contain any singularity and (¢* — §,t* + ) C [a,b]. Suppose Z is a parallel vector field on (t* — 4, t* 4+ §) such
that Z(t*) = Vw/(t*). Then, by continuity, 36; > 0 such that (Z, Viw') > 0 for |t — ¢*| < §; < §. Now let
¢ : [a,b] — [0,00) is a bump function such that ¢ = 0 for ¢ & (t* —d1,t*+01), ¢ > 0 on at least an open interval.
Define Y = ¢Z on (t* — 01,t* + 1) and 0 otherwise. Finally, define v(t,€) = exp €Y (¢). Then, d.v(t,0) = Y (¢).
Then, since Y = 0 whenever Aw’ # 0, L'(0) = 0 gives f;(Y, Viw')dt = :::?11 (Y, Viw')dt = 0 which is
contradiction. Thus, V,w’ = 0 where it is defined. Hence, for every homotopy v of w, L'(0) = — >, (Y, Aw').
Then, choose Y satisfying Y (f) = Aw'(t) whenever Aw’(t) # 0, and define v(t,e) = expeY (f). It gives
0=>,(Aw'(t), Aw'(t)) which proves w is actually differentiable over [a,b]. Thus, w is a geodesic. O

2.9 Jacobi Fields

Theorem 90. For a differentiable w : [a,b] — M with |w’| = 1, differentiable variation v : [a, b] x (—€g, €9) — M
and L : (—eg, €9) — R satisfying L(e) = £(v(—,€)),

oL
de?

where Y (t) = d.v(t,0).

b
(0) = (Vdev, )2 +/ IV.Y)? = (R(W, Y)W, Y) — (W, Vi Y)? — (Vo , Ve Ov)dt



Proof. Omit.

Theorem 91. For a geodesic w : [a,b] - M with |w’| = 1, differentiable variation v, length function L and
field Y = 86v|€:0,
L'(0) = (Y, w')a

and

b
L7(0) = (Vedow, o)} + / VY12 — (RO, Y1), Yt

a

where Y, =Y — (Y, w' )’

Proof. Use (V,Y), = V;Y, which is from Viw’ = 0, it is just an application of Theorem and Theo-
rem [90L. O

Definition 92. For vector fields X,Y along a fixed geodesic v : [a,b] — M with || =1, (X,Y) = ff(X, Y)dt.

Definition 93. For a geodesic v : [a,b] — M, 7o is the vector space of piecewise C! vector fields X along
such that X (a) =0, X (b) = 0 and orthogonal to ~.

Definition 94. Index form is a symmetric bilinear form defined on vy defined as

I(X’ Y) = /b<VtXa VtY> - <R(7l7X)7/aY>dt

Remark. If Y € 7q is induced by some homotopy v of v with the arc length function L, L"”(0) = I(Y,Y).
If we use the integration by parts, I(X,Y) = — f:(VfX + R, X)y,Y)dt.

Definition 95. Jacobi operator is a self adjoint operator associated to index form, which is defined as
LX = -V?X — R(Y,X)y
In other words, (LX,Y) =I(X,Y) = (X, LY).
Definition 96. Jacobi field is a vector field Y along a geodesic v satisfying LY = 0, which is actually the
Jacobi equation.

Remark. Easily, v/, 1" are Jacobi fields. Moreover, Jacobi equation is a linear equation.

Theorem 97. If J is the set of Jacobi fields, then 7 is a vector space with dimension 2 dim M. Moreover, if
geodesic is defined on [a,b] and to € [a, ] is fixed, then for every &,n € T, M, there is a unique Y € J such
that Y (to) = &, (VY )(to) = n. Furthermore, if Y € J and Y # 0 at some point, then |Y|? + |V,Y|? > 0 on .

Proof. Suppose Y(t) =, Y7 (t)E; where E; is a parallel transport and F;(t) are orthonormal. Then, F;(t)

are also orthonormal. Then, define Rf =(R(Y,E;)Y, Ex). Now, LY = 0 if and only if yi" 4+ > Y R;? =0 for
every j. Thus, theorem follows from the ODE theory. O

Theorem 98. If X|Y € 7, then (V,X,Y) — (X, V,Y) is a constant. Moreover, for any Y € 7, (Y,v') = at+0b
for some constant a,b. In other words, 7+ = {Y € J | (Y,~') = 0} is a subspace of J of codimension 2

Proof.
2((ViX,Y) = (X, ViY)) = (ViX)Y) — (X, V}Y) = (X,R(y,Y)?) — (Y. R(v, X)¥) = 0.
Now,
0 (Y,7) = (Vi) + (Y. Vey') = (V¥ ) = (Y, Vi)
s0 is constant since v/ € J. Then, integrating both side gives result. O

2.10 Jacobi field of geodesic curves in Manifolds with constant sectional curvature

If manifold has a constant sectional curvature x, then for Y € J* on geodesic 7 satisfying |¢/| = 1,
R(W,Y)Y =rk((7,7)Y —(Y,v)v') = kY by Proposition . Thus, Jacobi equation becomes V7Y +kY = 0.



Definition 99. For «, S, C, are solutions of a differential equation ¢ 4+ ki) = 0 satisfying S, (0) = 0,5, (0) =
1,C(0) =1,C.(0) = 0. Thus,
cosvkt k>0
Ci(t) = 1 k=0
coshy/—kt Kk <0

1 .
Wsm\/ﬁt k>0
S.(t) = t k=0
_1 _
\/jﬁsmh\/ kKt k<0

Proposition 100. If manifold has a constant sectional curvature &, then for given geodesic v and Y € J+,
there exists a parallel vector fields A, B orthogonal to 4" such that Y = C, A+ S, B.

Proof. Tt is just from the dimension argument. Also, if we choose a orthonormal vector field with E, = «/,
then Jacobi equation gives vi" + kYJ =0 for j=12--- /dimM — 1 where ¥ = ZYjEj. Then, this result
follows. O

2.11 Conjugate points

Definition 101. For a geodesic curve v, v(¢1) is said to be conjugate to ~(to) if there exists Y € 7, Y £ 0
such that Y (t9) =Y (t1) = 0.

Remark. Naturally, such Y is in J+. Moreover, 4/ has no zero point, and ¢y’ has at most one zero point.

Proposition 102. For a geodesic curve 7 : [a,b] — M and ty € (a,b] such that v(ty) is not conjugate to v(a),
for every & € 9/(to)*, there exists a unique Y € J+ such that Y (tg) = &, Y (a) = 0.

Proof. Omit.

Theorem 103. For a Riemannian manifold M with a constant sectional curvature x and a unit speed geodesic
v : (—00,00) = M, ~v(0) has a conjugate point if and only if x > 0. In that case, 'y(f) are conjugate points.

Proof. Omit.

Theorem 104. Suppose N < dimM — 1 and Y3,---,Yy € J+ with (Y, ViYy) — (Y&, ViY;) = 0 for every
1 <j,k<N. Then, if X =Y f1Y; € v0, (X, X) = [} |22, f7'Y;[?dt.

Proof. Just from direct computation. We might get [V, X [2—(R(y/, X )7, X) = | 3 7Y, 2+(X fiV,Y;, X). O

Theorem 105. If « : [a,b] has no conjugate point to vy(a) over (a,b], then I is a positive definite on 7. If no
conjugate point over (a,b), then I is positive semidefinite and I(X, X) = 0 if and only if X € J+ N y.

Proof. Choose linearly independent Y7, Ys,--- Y,y € J+ where Yi(a) = Ya(a) = --- = Y,,_1(a) = 0. Since no
conjugate point on (a,b), there exists f7(t) such that X (t) = E;’:—ll JFi(t)Y;(t) on (a,b) since X € v9. Now, if
f7 are all bounded, then since X (a) = X (b) =0, so

b b—e
I(X,X) = / VX — (RO, X0, X)dt = lim [ |[VX]? — (R(+, X), X)dt

e—0t a+te
) ; b—e i 2 b y 2
= lim, Zf(Vth,X>+/a+6 ‘Zf Yj‘ dt :/a ’Zf Yj] dt >0

Moreover, if I(X, X) =0, then > f-j/Yj = 0, so by linear independency, fj’ = 0, which means f7 are constant.
Thus, X € J*+.

Now, let [ = dimvyy, N J+ and Y3,---,Y] is a basis of 79 N J*. Then, let ey = ViYy(a) for p=1,2,--- 1
Then, extend it to {ei,---,e,_1}, which is a basis of 7/(a)*. Then, let Y;,1,---,Y,,_1 be the Jacobi fields
such that Yj;(a) = O and VtYk(a) = e;. In other words, we actually not choose arbitrary linearly in-
dependent Y1,~- ,Yo_1 € J*, but choose in this way. Then, if alHYlH(b) + -+ ap1Ya-1(b) = 0,
a1 41Yi+1 + -+ an— 1Yn 1 € %N J+, which gives aj41 = - = ap—1 = 0 from linear independency of
V.Yi(a)’s and the fact that Y7,---,Y] is a basis of 7y N jL. Thus Yl+1(b) -, Y,—1(b) are linearly indepen-
dent. Moreover, since Y;(b) = Yg(b) =.--=Y(b) =0, s0 VY1(b), -+, VY] (b) are linearly independent since
Y2 4+ |V.Y|? > 0 for nonzero Jacobi ﬁeld Y from Theorem and Yi,---,Y; are linearly independent.
Now, since (Y;(a), V:Y;(a)) — (Y;(a), ViYi(a)) = 0 since Y;(a) = Yj(a) = 0 for every 4,5 € {1,2,--- ,n — 1},
so by Theorem 98], (V,Y;(b),Y;(b)) = (V¢Y;(b),Yi(b)) = 0 for i € {1,2,---,1},j € {I+1,---,n —1}.
Thus, {V:Y1(b), -+, V:Y(0)} L {Yi41(b), -+, Yr_1(b)}, so {V:Y1(b), -, VYi(0),Yi11(), - ,Yno1(b)} is a



basis of 4/(b)*. Now, if 7, is a parallel transport from Ty(t) to Ty(1), by Theorem .. we get X (t) =
Tio.t (X (to) + (t —t0) (Vi X)(to)) + o(t — to). Then, let £ be (V,X)(b) = Zi E (VYY) (b) + Zl 11 £%;(b). Then,
if t < b,
X(t) = 11(X(b) + (£ = b)(Ve X)()) + 0(b — 1)
1

= 70((t = b)Y & (VaYi)(b) + (¢ — b) Z €'Y;(b)) + o(t — b)

i=1 i=l+1
1
= &Yi(t)+ (t D) Zgl t) + o(t — b)
=1 i=l+1
since X(b) = Y1(b) = --- = Y;(b) = 0. Recall Y;(t) = 7, (Yi(b) + (¢t — b)V,Y;(b)) + o(t — b) also. Thus,

limy_,,- fi(t) =& fori=1,---,l and limy_,;,~ fi(t) =0fori=1+1,--- ,n— 1. Thus, f* are bounded to b, so
bounded on (a, b].

Lastly, for t — a™, choose ' as V; X (a) = Y, n'e; = >, n*(V:Y;)(a). Then, similarily, lim; ,,+ f(t) = 7',
so bounded on [a, b]. O

Recall that if X € 7, then ‘(1;5 (0) = I(X, X) for the variation of arc length L, where d.v(—,0) = X. Then,
if there is a X € g such that I(X,X) < 0, then it cannot be a length minimizing geodesic, since we can
construct a variation v(t,€) = exp eX (t) of 7.

Theorem 106. For a unit speed geodesic v defined on [a, b], if y(a) has a conjugate point v(to) with ¢y € (a, b),
there exists X € o such that I(X, X) < 0. Thus, v cannot be a length minimizing path over its first conjugate
point.

Proof. Let Y € J* such that Y # 0 and Y (a) = 0,Y (tg) = 0. Then, define

Y(t) te ato]
Yl(t):{ 0 teltod

Then, Y1 € 7o and I(Y1,Y1) = (L£Y7,Y7) = 0 since LY; = 0 on [a,tg], Y1 = 0 on [tp,b]. Since Y(¢y) = 0,
V.Y (tp) # 0. Then, let Z be a parallel transport along ~ such that Z(tg) = —V:Y (¢p). Then, let ¢ :
[a,b] — R be a smooth map such that ¢(a) = ¢(b) = 0,¢(tg) = 1. Lastly, define X, = Y1 + ApZ. Then,
0o Z, Y = (&' Z + oV Z,y) + (0Z, VY'Y = ©'(Z,~). Moreover, 0,(Z,~") = (ViZ,v"Y + (Z,Vy') = 0 and
(Z(to),7 (to)) = —(V:Y (t0),7'(to)) = 0 since Y € J+. Thus, (pZ,7') = 0, which proves X, € vo. Lastly,

I(X, X)) = 1(Y1,Y1) + 2M (Y1, 0Z) + O(N?)

b
:2A/<VJav4wnwmeanhawnﬁ+ou%
:ﬂa/wmxvmmw—uwﬂvamw+ou%

=2\ /to (ViY,Vi(02)) + (LY + VIY,0Z)dt + O(N\?)

to
=2\ [ O (VY pZ)dt + O(N\?)

a

= 2MV,Y, 0Z)|0 + O(\?)
= —2)|V.Y (t0)|* + O(N?)

Thus, for sufficiently small A, I(Xy, X)) <0. O

2.12 Comparison Theorems

Theorem 107 (Bonnet- Myers) Suppose v : [0,b] — M is a unit speed geodesic and Ric(y',7") > (n—1)k >0
on ([0, b]) for some k. If b > x> then ~((0,b]) contains a point conjugate to v(0). Therefore, if M is complete

with dim M > 2 and there exists £ > 0 such that Ric(&, &) > (n — 1)k[€|? for any € € TM, M is compact with
diameter < ﬁ

Proof. Choose an orthonormal basis e, -+ ,e,_1 of 7/(0)*. Let E; be parallel transports of e;’s. Let X;(t) =
(sin ZL)E;(t). Then, X; € . Moreover,



by simple calculation using v/, E1, -+, F,_1 as an orthonormal basis to compute Ricci curvature tensor. Now,
if b > ﬁ, then index form is not positive definite on ~y, so v has a conjugate point on (a, b].

Now, for complete case, by Hopf-Rinow theorem, for any p, g, there exists a unit speed geodesic such that
~v(0) = p,v(d(p,q)) = g. Since it is a length minimizing, there is no conjugate point on (0, d(p, ¢)) which means
d(p,q) < ﬁ Hence, M itself is a closed bounded subset of M, so is compact by Corollary O

Theorem 108 (Cartan-Hadamard). For a unit speed geodesic v : [0,b] — M satisfying K < 0 for every section
on ¥([0,b]), v((0,b]) does not contain a conjugate point of v(0). Thus, if M is complete and every sectional
curvature is nonpositive, then M has no conjugate pair.

Proof. For any X € o, I(X,X) = [J|V,X|> = K(+/,X)|X|2dt > [ |V:X|2dt > 0. Thus, it is true by
Theorem [106l

Theorem 109 (Morse-Schonberg). If § > 0 and K < § on a unit speed geodesic v : [0,b] — M such that v(b)
is a conjugate point of v(0), then b > %.

Proof. If Y € 7N J*, then 0 = I(Y,Y) > [V|V,Y|> — §|Y[*dt. By Wirtinger’s inequality, [y |V,Y|%dt >
(x2/b%) Jo [Y'[2dt. Thus, done.

Remark. Wirtinger’s inequality can be proved by Fourier series, or Rayleigh characterization of eigenvalue,
L1Vl

Jv?

which means Av + Av = 0 with Dirichlet condition, first eigenvalue A = inf

Theorem 110 (Rauch). For a real § and a unit speed geodesic 7 : [0,b] — M satisfying K < d on ~,if Y € J+,

then |Y|” 4+ §|Y| > 0. Moreover, if ¢ satisfying ¢" + d¢p = 0, ¢(0) = |Y](0),%'(0) = |Y|'(0),% # 0 on (0,b),

then (|Y|/4)" > 0, |Y| > 9. Moreover, (|Y]/1)" = 0 at to if and only if K(Y,+’) = d on [0, o], and there exists

a parallel unit vector field F along ~ such that ¥ = ¢ E on [0, ¢o].

Proof. At first, |Y|' = %. Use Jacobi equation, we gain

"_ |th|2 — <Y7 R(’)’/a Y)7/> _ <Y7 vty>2
Y| Y[?

VY PIY? = (V, Vi)
Y[

Y| > —0lY[+ > —0[Y]|
Thus, the first part is done.

Now, let F =|Y | — |Y|¢'. Then, F(0)=0,F" = Y|y — Y|y =|Y|"v — |Y|¢” > 0. Thus, (|]Y]/4)" > 0.
Then, this gives, |Y|/¢ > 1, so |Y| > . Lastly, if (|Y|(to)/%(t0))" = 0, then F(0) = F(to) = 0 with F’ > 0
implies F = 0 on [0,t]. Thus, |Y| = ¢ on [0,#y]. Thus, we can write Y = ¢E for some |E| = 1. Then,
V.Y =¢'E+VE. Then, we attain equality on [Y|” 4+ J§|Y| > 0, so we attain equality of the Cauchy-Schwarz
inequality. Thus, Y and V.Y are linearly dependent. Since, ¥ # 0 on (0,t¢], |E|?> = 1 is constant, so E, VF
are orthogonal, which implies V,E = 0 on [0, ¢o]. Inverse can be done easily by just calculation, so is done. [

2.13 Jacobi fields and the Exponential map

Theorem 111. Let M be a Riemannian manifold with dimM > 2. Fix p € M and { € TM N1, M.
Suppose Y is a Jacobi field along v(t) = expt£ such that Y'(0) = 0,V,Y(0) = n € T,M. Then, if t£ € TM,
Y (t) = d(exp,,)ielictn

Proof. For Z such that Z(0) = &,2'(0) = I¢n, let v(t,e) = exp(tZ(e)). By simple calculation, Y (¢) = d.v(t,0)
is the Jacobi field satisfying theorem. It follows from the fact V,0.v = V. 0,v. O

Corollary 112. The kernel of d(expp)e is isomorphic to the subspace of Jacobi fields along « vanishing at p
and exp&.

Corollary 113 (Cartan-Hadamard Theorem). The exponential map for a complete Riemannian manifold with
nonpositve sectional curvature has maximal rank everywhere.

2.14 Riemann Normal Coordinates

Consider 2 dimensional case. In general, for a geodesic v with a chart centered at (0), even if v(1) = p is point
(a,b), v(t) # (at,bt) =t - (a,b). To do similar thing as this, we need some special coordinates.

Fix p € M, and choose U as open, starlike respect to 0 in 7, M where exp is diffeomorphic between U and
its image, which is an open set of M containing p. Then, if e, -+, e, is an orthonormal basis of T, M, we
may choose a chart n : U = expU — R™ as n/(q) = ((exp|u)~'(q),e;). Then, if v = Y vie; € U, we get
n’(expv) = v7. Then, for any v € T,M, v(t) = exptv we get n(y(t)) = tv,(nov)'(t) = v which means v is a
straight line in given chart.



Proposition 114. Suppose Y, Z are Jacobi fields such that Y (0) = Z(0) = 0, V.Y (0) = n, V,Z(0) = ¢ along
geodesic y(t) = expt€ with |¢| = 1. Then,

4

Y, 2)(0) = 200, Q) — S (RENE Q) + O(F)

Proof. To make equation simpler, use ’ instead of V;. It is enough to prove the case for the Jacobi fields
Y = Z = J such that J'(0) = n with || = 1. We can write J(t) = d(exp, ) [¢tn. First, (J,J)(0) = 0. Now,
(J, JJ)'(0) =2(J,J'}(0) = 0. Then, (J, J)"(0) = 2(J", J)(0)+2(J'(0), J'(0)) = 2. Now, J"(0) = —=R(®, J)¥'|o =
0. Thus, (J,J)"(0) = 6(J", J")(0) + 2(J", J) = 0. Lastly, for any w,

(R(Y, I)Y),w)(0) = (R(Y', J)7',w)"(0) — (R(v', )+, w") (0)

= (R(Y,w)y",J)"(0)

= ((R(Y,w)Y")', 1)(0) + ((R(~', w)y'), ')(0)

= ((R(~, J)7"), w)(0)
which proves (R(v,J)y')'(0) = R(y,J')y'(0). Then, J"(0) = —R(vy/,J')y’. Use that, we can compute
(J, J)"(0) = 8(J", J')0) + 6{J", J")0) + 2(J", J)(0) = —8(R(&,n)&,n). This proves, (J,J)(t) = t? —
;( R(&,m)€,m) + O(t%). To gain the general case, use (v, w) = i(|v +w|? = v —w|?). O

Now, for the Riemannian normal coordinate based on ey, --- ,e,, let ¥; be Jacobi fields such that Y;(0) =

0,V:Y;(0) = e;. In other words, Y;(t) = d(expp)tvlivtej. Then, t71Y;(t) = d(expp)iwlive; = 0;.
Theorem 115. Under the Riemannian normal coordinate,
1 3

giw(expv) =k — S (R(v, ¢j)v, ex) + O(|vl")

Proof. Let § = 7 and |v| = t. Then,
gir(expv) = gjn(expt€) = (t71Y;, t 71 Vi) (1) = t72(V;, Yi) (1)
2
< (57 ej)£7 ek> + O(t3)

(R(v,ej)v,er) + O([v]*)

= (ej, e

) —
g, L
b= 3

Corollary 116. Under the Riemannian normal coordinate,
1
det(g;k(exp(v)) =1 — gRic(v, v) +O(|V]?)

Proof. Omit.

Recall Theorem [I00}. If manifold has a constant secional curvature k, then for any Jacobi field Y, there
exist parallel vector fields Ey, F5 such that Y = (at+b)y' + S, E1 + Cy Ea, where y(t) = expt for |£| = 1. Then,
if we give condition Y (0) = 0, we can conclude Y (¢t) = aty’ + S, E1. Then, if we use the Riemannian normal
coordinate under ey, - - - , e, there exists a;, £; such that Y;(t) = a;ty/(t) + . E;(t). Then, since V,E;(0) = e;,
we get e; = a;& + E;(0). Since Ej is orthogonal to ', (€,e;) = a;|¢|> = a;j. Thus, a; = &7, so E;(0) = e; — EI€.
Lastly, we get g;x(exptf) = £9¢F + S. S (85 — &€7€F) from the direct calculation.

Theorem 117. For a Riemannian manifold M has a constant secional curvature &, fix p € M and U C T, M
defining the Riemannian normal coordinate, we get

vivk  S2(Jv) vivk
S T T T

Proof. Use above result. O

Now, we do some formal calculation. If we consider v = t&, |£] = 1, we get (£, d€) = 0 with dv = ¢(d€) + (dt)¢.
Also, > vidvd = S (v7 (dted + tdel)) = Z(t{det +t2¢9dgT) = t|€)?dt + t2(€, d€) = tdt. Under this result, let’s
compute ds? = Y gjpdv;dvy. First, Zj & | ‘2 dvjdvk = (tdt) = dt?. Moreover, Z (t)( Ok — ﬁi}—f;)dvjdvk =

2 2

Sl (S0 dv? — di?) = %0 (|dv|? — dt?). Then, since |dv[? = £2|d€|? +di?[¢[> = di* + 12| dE|?, we get |dv]® — di?> =
t2|d¢|%. Finally, we get ds? = dt* + S2(t)|d¢|?.




3 Riemannian Volume

Definition 118. Suppose §{ € T,M and [{| = 1. Then R(?) : T}, ,(y M — T, (;yM is defined as R(t)(n) =
R(ve (), n)ve(t), R(t) : TyM — T, M is defined as R(t) = 7,1 oR(t) o 7y where 7 is the parallel transport by e
from p to v¢(t). Remark that R(t) also be considered as R(t) : £+ — &1, Then, A(t,€) is a linear transform,
in other word, matirx, which satisfy A” + R(t)A = 0 such that A(0,&) =0, A4’(0,&) = I.

Using such A, we can write a Jacobi field Y € J= satisfying Y (0) = 0,V,Y(0) =n € {¢+ as Y (¢) = AL, )n.

Definition 119. A Conjugate locus of p € M is a subset of T,M N TM which is consisting of critical
points of exp,. By Corollary , it is equivalent to the collection of the vectors t§ € T, M N T M such that
det A(t,£) = 0 where |¢] = 1.

Definition 120. For p € M, { € T,M with |{| =1, ¢(§) = sup{t > 0 | t§ € TM,d(p,v¢(t)) = t}.

Remark. If d(p, ve(t1)) = t1 for some t1 > 0, then 0 < ¢5 < ¢ implies d(p, y¢(t2)) = t2. Moreover, if 0 < t < ¢(£),
then ¢ is the unique minimizing geodesic from p to v¢(¢). If |n| = 1 and v, () = ~¢(¢), then for T € (¢, c(£)),
we construct length minimizing broken geodesic, which actually being a geodesic, so n = &. Lastly, if v¢(T) is
a conjugate point, then ¢(§) < T.

Theorem 121. For a complete manifold M, if ¢(§) < oo for some § € S, Ye(c(§)) is the first conjugate point
along ¢ or there exist at least two minimizing geodesic connecting 7(€) and v¢(c(£)).

Proof. First, since ¢(§) < oo and M is geodesically complete, ¢(§)§ € TM. Consider decreasing t; converges
to c(&). Let dj = d(p,7¢(t;)). By Hopf-Rinow theorem, there exists 7; € S, such that v¢(t;) = v,,(d;). Since
t; > (&), dj < t;. Now, there exists a converging subsequence 7;,. Suppose it converges to (. If { = ¢, it
means exp,, is not one-to-one near c(§)§. Thus, exp, has a critical point at ¢(£)§, which means ~¢(c(€)) is the
first conjugate point. If ¢ # &, then y:(c(§)) = ve(c(§)) where length by . is also ¢(§). Thus, there exist at
least two minimizing geodesics. O

Definition 122. Unit tangent bundle SM = {{ € TM | |¢{| = 1}.

Theorem 123. Function ¢ : SM — (0, 00] is upper semicontinuous. If M is complete, then ¢ is continuous.

Proof. Omit.

Definition 124. The cut locus of p in T,M is C(p) = {c(§)¢ | c¢(§) < 00,& € S,M} N TM. Then, the
cut locus of p in M is defined as Cy(p) = exp C(p). Then, define D, = {t£ | 0 < t < ¢(§),{ € Sp} and
DIJ)VI =expD,.

Theorem 125. D,, is the largest domain, starlike shape which exp, Ip, is a diffeomorphism and moreover,
D) = exp(T,M N TM)\ Cr(p).

Proof. Omit.

Definition 126. For each p € M, injectivity radius of p is defined as inj p = inf{c(¢) | £ € S,} and
injectivity radius of M is defined as inj M = inf{inj p | p € M}.

Theorem 127. For p € M and £ € S, if 7¢(to) is a conjugate point of 7¢(0) or there exists two minimizing
geodesics connecting p and ¢ (to), then ¢(§) < 1.

Proof. If conjugate point, then it cannot minimize over this point, so ¢(§) < to. If there exists two minimizing
geodesics, suppose o is another such unit speed geodesic. Then, there is € > 0 small enought such that
ve(to + €) is defined, and there exists unique geodesic 7 connecting o(tg — €) and v¢(to + €). Then, since o, ¢
are distinct, so piecewise geodesic by o,~e connecting them is not length minimizing. Thus, ¢(7) < 2e. Thus,
d(p,ve(to+€)) < to— e+ (1) < tog+ €. Thus, c(§) < to. O

Definition 128. A compact Riemannian manifold such that C(p) reduces to a point is called as Wiedersehen
manifold.

Theorem 129. Two dimensional Wiedersehen manifold is isometric to a sphere.

Remark that if ¢ is a cut point, which means ~¢(c(€)), then p is a cut point of ¢ along reversed 7. Also, by
its definition, any point in Déw has the unique minimizing geodesic joined to p.



Theorem 130 (Klingenberg’s Lemma). If M is a complete Riemannian manifold and ¢ € C(p) such that
d(p,q) = d(p,C(q)) where ¢ is not conjugate to p along a minimizing geodesic, then ¢ is the midpoint of
a geodesic loop start and end at p. In particular, if M is a compact Riemannian manifold with sectional
curvature bounded above by § with 6 > 0, inj M < min{ z L](M)} where ¢(M) is the length of the shortest
simple closed geodesic in M.

Proof. By hypothesis, there exists two geodesics, y1,72. To show it is a loop, enought to show that ~; (L)
—v5(L). Suppose not, choose a neightborhood U; of +{(0) and Us of 75(0) in S,. Then, {v:(L) | Eelh
and {v,(L) | n € Ua} intersect transversally, so there exists a sufficiently small e such that {ve(L —¢€) | £
Ui} N {yy(L —¢€) | n € Uz} # 0 which is contradiction to g is the closest to C(p).

Omo 1l

Theorem 131. Distance function d, : M — R defined as dp(¢q) = d(p, ¢) is smooth on M \ {C(p) U {p}}.

Proof. Sketch of proof. Choose A as exp|a : A — M\ (Cp(p) U {p}) is diffeomorphic. Then, d,(q) =
|exp, ' (¢)| = |v|. Then, for any vector X € T,M, choose a smooth curve o in M \ (Ca(p) U {p}) such that
(0) = ¢q and ¢’(0) = X. Then, consider geodesic variation s such that unique minizing geodesic from p to
o(s). Then compute %(0) = X (dp) = (X, (dp(q))) where v = . O

3.1 Riemannian measure

How to define integral on Riemannian manifold? First, consider a compact subset K of (M, g) such that included
in a domain U of a chart x : U — R. Then, z(K) is measurable. Then, we may define

Vol(K / Vdet g% oz dxy -

Use g% = JTg¥.J as before, we can conclude this definition does not depends for the choice of charts by simple
calculation.

Then, for general case, we may define integral by a partition of unity, and it is easy to prove that integral
does not depends for the choice of the partition of unity. Then, if p, is a partition of unity, we might denote
dV =3, pav/det g%« oz dxy - - - dxy, just in formally, so we might use notation [ fdV.

3.2 Volume comparison theorems

Theorem 132 (Giinther-Bishop Theorem). For a unit speed geodesic v¢ such that sectional curvatures along
this curve is bounded above by §,

(det A(t,£))’
det A(¢,€)

S5

> (nil)Sia

on (0, f) and det A > S3~" on (0, \f] If § <0, then both are true for (0, 00).

Proof. Let B = A*A. Then, det B = (det A)?. Then, Indet B = 2Indet A, so (iitt‘i)/ = (?fctt%)/ = 1tr(B'B71).

Now suppose e, - ,e,_1 is a orthonormal basis of £+, composed by eigenvectors of B, which is symmetric.

Let 1; = Ae;. Then, Bei = \;e; where \; = (Be;,e;) = (A*Ae;, e;) = (Ae;, Ae;) = (i, m5). Then A= 2(nl,mi).

Thus, 3trB’'B~! = 2)\ =5 Zi 213 Then, by Theorem (110, with ¢ = ¢S;, Y =1, ‘I l‘ = <<7:;’j77;>>) > %
O

gives result. Second inequality is just integrating.

For second inequlity, LHS is a volume element of M, which means dV (exp t§) = det A(t, &)dtdp,(§) in some
sence, where this can be done by some calculation. RHS is just a volume element of a constant sectional
curvature manifold with §. From formula ds? = dt* + S%(t)|d¢|* for constant sectional curvature, it is easy to
show that volume element of such manifold is \/det g=+/1---(S3)"=1 = S7~!. Also, by some more calculation,

we can prove that volume of S*~1is ¢,_1 = F(ﬂ;z/Q)’ and volume of a Ball B" is w,, =

Cn—1
n "

Theorem 133. If sectional curvature is bounded above by §, then volumn of a ball in M, V(z,r), satisfies
V(z,r) > Vs(x,r) where Vs(x,r) is a volume of a disk in a manifold with constant sectional curvature ¢ for
every r < min{inj z,7/v/3}.

Proof. Omit.

Theorem 134 (Bishop). If the Ricci curvature is bounded below by (n— 1)« along unit speed geodesic e until
its first conjugate point,
A ! /
(et ALOY _ 5
det A(t,€) Sk

from 0 to first conjugate point. Also, det A < S™~1! is also true. Moreover, equality holds to tq if and only if
A= 5.1, R =kl for every t € (0,1].



Proof. Define ¢ = (n — 1)2—/“ = (n —1)CT,. Then, ¢ < 0, ¢/ 4+ nw—jl + (n — 1)k = 0 which is called as the

Riccati equation. Now, consider ¢ = trU = trA’ A=t = (icetti)/. Then, for Wronskian W(L,T) = (L')*T — L*T",

we get W(A, A) = 0 from equation A” + RA = 0 and the fact that R is self-adjoint. Then, U* — U =

(A~1H*W (A, A)A~! = 0 which means U is self-adjoint. Moreover, U’ +U? 4+ R = 0, which is the matrix Riccati
2

equation, and then, (trU)" + trU? + trR = 0. Then, by Cauchy—SchwarZ inequality, trU? > M which gives

&+ f—jl + (n—1)k < 0. Then, integrate # > 1 gives CT,. 1 7 > s, finially conclude w > ¢. Specific

n—1

calculation are omitted. O

Lemma 135 (Gromov). Suppose f, g are positive integrable, f/g is decreasing, then fg f/ for g also decreases.

Proof. For R > r > 0, forffoRg = forfforg-i-forferQ > o f s 9ty f;g:ggf g=Js fJs 9+ )y ng gg:g >
T r r R r R

ot loo+loal F=1lygly I O

For D, (r) = 1D, N S(z,r), define lower area Q(z,r) = o, (v det A(r, §)dps(Ss). Let Au(r) = en1 ST (r).

K

Proposition 136. If the Ricci curvature is bounded below by (n — 1)k, then CjL(’:)) decreases with respect to
.

det A
S@—l

Proof. Simple consequence of the Bishop theorem, which gives decreasing. O

Theorem 137 (Gromov). If the Ricci curvature is bounded below by (n — 1)k, then “//(w(:)) decreases with
respect to r. '

Proof. Since V(z,7) = [; Q(x,s)ds, Vi(r) = [, Ax(s)ds, it just follows by Lemma [I35l. O

4 Riemannian Covering

Definition 138. For two connected topological manifolds M M, ) M — Mis a covering map if for every
p € M, there is a connected open neighborhood U of p such that each component of ¢»~1(U) is homeomorphic
to U.

Theorem 139 (Unique Lifting Theorem). For any path w : [0,b] — M such that w(0) = p with a covering
map v : M — M, for every p € ¢~1(p), there exists a unique path w : [0,b] — M such that w = ¢ o w and
w(0) = p.

Definition 140. A covering map 1 : M — M between two differentiable manifolds is a differentiable
covering if it is a differentiable covering map with maximal rank on M.

Definition 141. A covering map between two Riemannian manifolds is a Riemannian covering if it is a
differentiable covering and a local isometry.

Proposition 142. If ¢ : M — M is a Riemannian covering, then M is complete if and only if M is complete.

Proof. Since ¢ is a local isometry, exp(diyr)§) = ¢(exp§) for every £ € TM. In other words, geodesic
preserved. Now, if M is complete, then it is geodesically complete. Now, for every £ € T, M, since differentiable
covering, there exists a £ € TzM such that dys€ = . Then, there exists a geodesic v : R — M such that

~¥'(0) = €. Now, 9o+ is a geodesic of M such that (p0v)'(0) = &, which proves M is also geodesically complete,
so is complete.

Also, if M is complete, then it can be done easily that lifted geodesic by Theorem is a geodesic.
Thus, M is geodesically complete, so is complete. O

Theorem 143 (Myers). For any complete Riemannian manifold M with Ricci curvature is bounded below by
positive constant, M is compact and if ¥ : M — M is a Riemannian covering, then M is compact.

Proof. Omit.

Remark. There is a sectional curvature version theorem of this theorem.

Proposition 144. If ¢ : X — Y is a local isometry, then for every p € X, there exists an € > 0 such that
¢|B(p76)B(p, €) = B(¢(p),€) is an isometry.



Proof. Let ¢, > 0 satisfying exp|g(,.,) : B(p,€p) — B(p,€p) be an isometry. Similarily, define €4(,). Then,
choose € = min{e,, €5(p) }. Then, dd,|g(p.e) : B(p,€) = B(d(p), €) is an isometry. Thus, ¢|p(p.c) = exPy(p) 0ddy 0
exp |g€p o is an isometry. Equality is from preserving geodesic property. O

Theorem 145. If M is a connected complete Riemannian manifold and v : M — Mis a surjective local
isometry, then v is a covering.

Proof. First, let v : [0,Tp) — M be a segment of a geodesic. Choose p € M such that Y»(p) = ~v(0).
First, note that by above proposition, there exists a unique lifted geodesic defined on [0,€¢). Now, let T =
sup{7|yljo,-] has a lifting starting at p}. In other words, for some € € TM such that dqﬁ,;g: ~'(0), w('yg(t)) =
7(t) for t € [0,T). Since complete, v¢(T") is defined, and 1(7¢(T")) = lim;_,7- (). Now, again, use small e,
T < T implies lift can be extended, which is contradiction. Thus, T" = T}, so every segmenet of a geodesic can
be lifted to a geodesic.

Now, fix p € M, and choose ¢ > 0 as exp|g(p,) is a diffeomorphism onto B(p,e). First, choose ¢ €
Uﬁew—l(p) B(p,€). Then, there is a p € 9~ 1(p) and a path w joining p and ¢ with £(w) < e. Then, w = o w is
a path joining p and ¢(q) with {(w) <, so ¥(q) € B(p,€). Thus, Uzcy-1(,) B(D,€) € Y B(p,e€)).

Then, for ¢ € ¥»~1(B(p,¢)), let ¢ = (7). By choice of ¢, there is a geodesic v : [0,T] — M joining p
and ¢ with () < e. Then, there is a lift 7 defined on M such that start at g with £(¥) < e. Then, since
lift, ¢ € Uﬁewfl(p) B(p,e), so Uﬁew’l(p) B(p,€) = ¢y~ 1(B(p,¢€)). Note that this is also true for every smaller e.
Now, if p1,p2 € ¥~1(p) with p; # Do, since diffeomorphic, d(p1,p2) > €. Then, B(p1,€/3) N B(p2,¢/3) = 0, so
B(p,€/3) is a desired neighborhood proving covering map. O

Theorem 146 (Cartan-Hadamard). For a complete Riemannian manifold M with every sectional curvature is
non-positive, exp,, : T,M — M is a covering map.

Proof. For metric g, equip metric (exp,)*g on T, M. This is possible from Corollary to define pull-back
universally. Then, geodesics on T, M are straight lines from origin, thus geodesically complete, so is complete.
Now, by above theorem, proof is done. O

Remark. If M is a complete Riemannian manifold with every sectional curvature is non-positive and simply
connected, then exp,, is a covering map and has only one sheet, so exp,, is a diffeomorphism. In other words,
M is diffeomorphic to R™.

4.1 Orientability
Definition 147. For a manifold M, two charts (U, ¢), (V,v) with UNV # ) have same orientation if 1o ¢!
has positive determinanat everywhere.

Definition 148. A set of charts is oriented if any pair of overlapping charts have same orientation.

Definition 149. A manifold M is orientable if it has a oriented atlas. Manifold is oriented if there is a given
oriented atlas. Any basis of T,M for p € M is a positive basis if it has same orientation with given oriented
atlas, and is negative basis if not.

Definition 150. For a vector space V, two basis {e1, -+ ,e,}, {v1,--+,v,} have same orientation if e! A
- Ae™(vy, -+ ,v,) > 0 where e are dual basis of eq, - - , e,. Two basis has opposite orientation if el A--- A
e"(v1, - ,v,) <O0.

Proposition 151. Two charts (U, z), (V,y) have same orientation if 6%1, e % and %, e % have same

orientation everywhere.
Definition 152. A volume form of a n-dimensional manifold is a n-differential form which never vanishes.
Proposition 153. Manifold is orientable if and only if it has a volume form.

Definition 154. For a local diffeomorphism F' : M — N between oriented manifolds, F' preserves the
orientation if for every p € M, image by dF}, of a positive basis of T),M is a positive basis of T, M. F
reverses the orientation if for every p € M, image by dF), of a positive basis of T,,M is a negative basis.

Proposition 155. For a connected non-orientable manifold M, there is a smooth covering 7 : M — M with
two sheets such that M is connected and orientable. The automorphism, also called as deck transformation,
group of the coverings is isomorphic to Zy. Moreover, if F': M — M is a automorphism which is not identity,
then F' reverses the orientation of M.



Corollary 156. Every simply connected manifold is orientable

Lemma 157. For A € O(n — 1) with det A = (—=1)", 1 is an eigenvalue of A. i.e., there exists v such that
Av =w.

Proof. Recall that every eigenvalue of A is 1, -1 or a nonreal complex number which always appear as a
conjugate pair. Thus, det A = 1 if and only if —1 has even multiplicity, and det A = —1 if and only if —1 has
odd multiplicity. Then, just using parity argument, 1 is an eigenvalue of A. O

Lemma 158. The parallel transport along any curve preserves the orientation.

Proof. Supppose curve is o : [a,b] — M and Ey,---,E, is a basis of Ty)M. Let Ei(t),---,E,(t) is a
extended vector fields along o by parallel transportation. Now, consider a volume form v of M. Then,
Vo(t)(E1(t),- -+, En(t)) is nonvanishing, so its parity is preserved. In other words, orientation preserved. O

Theorem 159 (Weinstein-Synge). For an isometry F' : M — M with a compact orientable M with positive
sectional curvatures, if n = dim M is even and F' preserves orientation, or n is odd and F' reverses orientation,
then F' has a fixed point.

Proof. Suppose F has no fixed point. Then, since M is compact, function p — d(p, F(p)) has a minimum
which is not zero. Let p be a minimum point. Then, since M is compact, so M is complete. Thus, there is a
minimizing unit speed geodesic o : [0,1] - M where [ = d(p, F(p)) such that ¢(0) = p,o(l) = F(p). At first,
we will prove dF,(c’(0)) = o’(1).

Remark that d(p, F(p)) < d(o(t), F(o(t))) < d(o(t), F(p)) + d(F(p), F(o(t))) = d(a(t), F(p)) + d(p,a(t)) =
d(p, F(p)) for any t € [0,1]. Last equality is from that any part of the length minimizing unit speed curve is also
length minimizing. Then, d(o(t), F(o(t))) = d(o(t), F(p)) +d(F(p), F(c(t))), so concating | ;) and F o o|[0,1]
is a length minimizing curve, which means it is also a geodesic. By uniqueness of the geodesic, we can conclude
concating o and F oo is a geodesic. In other words, F'(o(t)) = o(t + 1) when we extend a geodesic . Hence,
(F o0)'(0) = o’(l), which is equivalent to dF,(¢’(0)) = o’(1).

Now, let 7 be a parallel transport from p to F(p) along o. Let A=7"10 dF, : T,M — T,M. Then, Ais an
isometry, so A€ O(n) and if F preserve orientation, then A preserve orientation, F' reverses orientation, then
A reverses orientation. In other words, det A = (—=1)". Now, A(c’(0)) = 7= 1(c¢'(1)) = o¢/(0), so if we define
W = o’(0)*, then A = Aly : W — W and det A = (—=1)". Thus, A € O(n — 1) and det A = (—1), so there
is a vector Ey € W such that AE; = E;. Now, let Fy(t) is extended E; by parallel transport. Now, consider
a geodesic v : (—e€,e) — M such that v(0) = p,7'(0) = E;. Then, (F o~v)'(0) = dF,(E1(0)) = dF,(E1) =
T O A(El) = T(El) = El(l)

Then, consider a variation of o, 3(s,t) = exp, ) sE1(t) which satisfies V(t) = 9,5(0,¢) = E1(t). Then, ¥
along s is a geodesic, so V40,2 = 0. Thus, the 2nd variation of the length is

l
L(0) = (V.0,5, o). +/ VB2 — (R(o', Br)o’, Byt
0

:_/OZ<R(0’,E1) L E)d /K L By)dt <0

Thus, there is sp such that £(X(so, )) 0(3(0,—)) = 1.

Lastly, from that (F o~)'(0) = E1(l), since X(s,!) is a geodesic such that 9;%(0,1) = E1(l), by uniqueness
of the geodesic, X(s,1) = F o v(s). The definition of v is nothing but v(s) = 3(s,0). Thus, X(sg, —) is a curve
connecting X(sg,0) = v(sg) and X(sg,1) = F(y(so)) which is contradiction. O

Following theorem needs some knowledge of algebraic topology.

Theorem 160 (Synge). For a compact Riemannian manifold M with dimension n which has positive sectional
curvatures,

1. If n is even and M is orientable, then M is simply connected.
2. If n is even and M is non-orientable, then 1 (M) = Zs.
3. If n is odd, then M is orientable.

Proof. First, assume n is even and M is orientable. Let 7 : M— M be a univeral covering. Then, we may give
a pull-back metric from M and an orientation matches with M on M. In other words, volume form of M is
given as the pull-back of the volume form of M. Then, by Theorem |143] of sectional curvature version, M is
compact. Now, let F': M — M be an automorphism of the covering, which means m o F' = m. Then, F' is an
isometry which proeserves orientation. Thus, F' has a fixed point, so F' is an identity, which means the group
of automorphisms of the covering is the trivial group, which proves M is simply connected.




__ Now, if n is even and M is orientable, then consider natural 2-sheet covering 7 : M — M. Then, by part 1,
M is simply connected, so is a universal covering. Thus, 71 (M) = Z,.

Lastly, when n is odd, suppose M is not orientable. Then, consider natural 2-sheet covering 7 : M — M
and a non-trivial automorphism F of covering. From Proposition [I55], F reverses the orientation, so F has
a fixed point. Then, F' must be the identity, so is contradiction. O]

Remark. For RP™, w : S™ — RP™ is a natural universal covering, with unique nontrivial automorphism
A(p) = —p, which is the antipodal map, an isometry of S™. Thus, 7 (RP™) & Zy always, so RP" is orientable
if and only if n is odd. Note that RP™ is a compact Riemannian manifold with positive sectional curvatures.
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